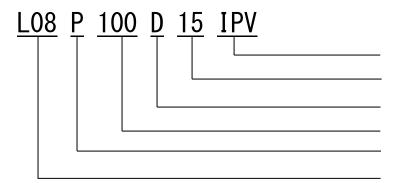

アプリケーションマニュアル

■概要

LOSP シリーズは、磁気比例式「貫通型-オンボード」の電流センサである。


■特徴

- ±15V単電源である。
- ・被測定電流は貫通型である。
- ・回路構成は、オープンループ構成である。
- ・オンボードタイプである。
- ・定格電流 100A~300A のバリエーションを持つ。
- ・定格電流に対応する定格出力電圧が高く(±4.0V)、S/N 比を稼ぐことができる。
- ・出力電圧の基準点は、GND(OV)である。
- ・定格出力電圧に対するオフセット電圧が小さい(±0.75%)。

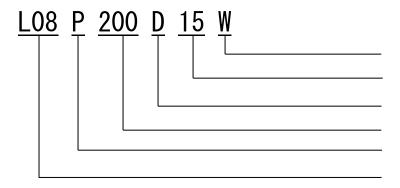
■用途

- 汎用インバータ
- ・モータ駆動
- ・DCDC コンバータ
- 発電機
- UPS

■形式1

特殊記号 バージョン記号

電源電圧 15 : ±15V


電源種類 D: 両電源

定格電流値 100:100A

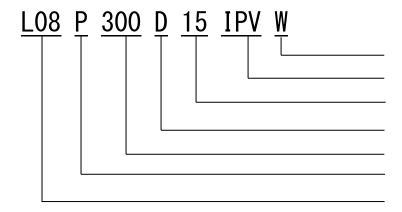
P:オンボードタイプ

シリーズ名

■形式2

特殊記号 W:飽和電流アップ対応

電源電圧 15:±15V


電源種類 D: 両電源

定格電流值 200:200A

P:オンボードタイプ

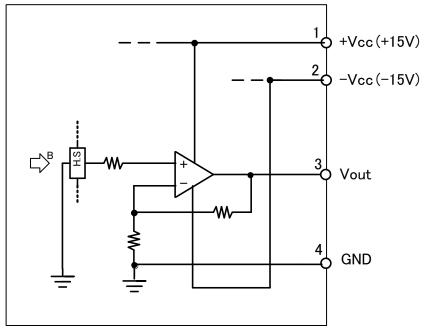
シリーズ名

■形式3

特殊記号 W:飽和電流アップ対応

特殊記号 バージョン記号

電源電圧 15 : ±15V


電源種類 D: 両電源

定格電流値 : 300A P:オンボードタイプ

シリーズ名

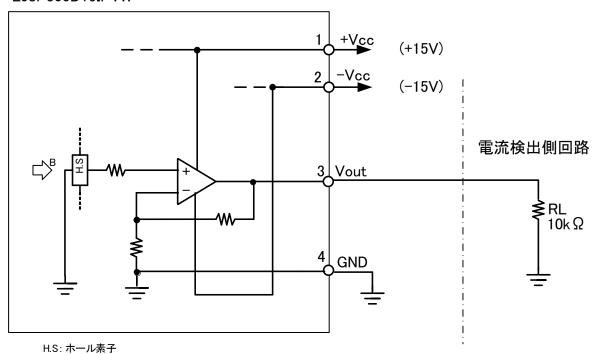
■ブロック図

L08P100D15IPV L08P200D15W L08P300D15IPVW

H.S: ホール素子

と :被測定電流による磁場

Fig1. 内部ブロック図


Table1. 端子の説明

端子番号	端子名称	説明	備考
1	+Vcc	プラス電源端子 (+15V)	
2	-Vcc	マイナス電源端子 (-15V)	
3	Vout	出力端子。	
		貫通穴に定格電流 If を流すと、4.0V の出力電圧を出力する。	
		標準負荷抵抗:10 k Ω。	
4	GND	GND 端子	

■回路例

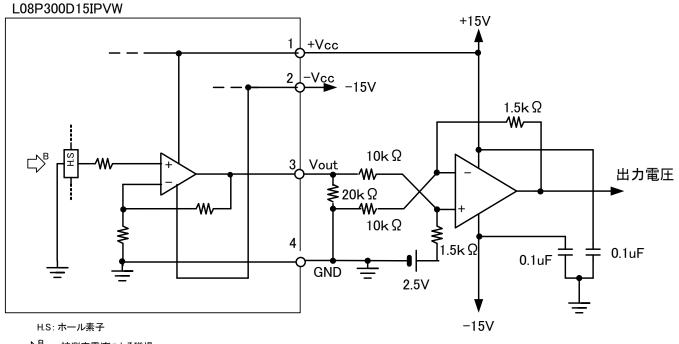
標準回路

L08P100D15IPV L08P200D15W L08P300D15IPVW

┌╲B :被測定電流による磁場

Fig2. 標準回路

□Fig2 の説明


この電流センサは、被測定電流を電圧変換する。Fig2の出力電圧 Vout (③) は、GND 電圧 (Vref) を基準に出力する。

末尾のグラフ1~3に各型番の Vout (③) と被測定電流の関係を示す。ただし、グラフ1~3は標準値であり、 オフセット電圧、ヒステリシス誤差等による影響は考慮していない。被測定電流のプラス方向は、筐体 (ケース または名板) に→にて表示する。

Fig2 中の 10 k Ω は、電流センサ出力 Vout (③) の受信回路の等価抵抗である。Vout 端子 (③) と GND 電位 (OV) 間の負荷抵抗は、標準 10 k Ω で使用ください。

基準電圧を 2.5V とする回路

L08P100D15IPV L08P200D15W

□ B : 被測定電流による磁場

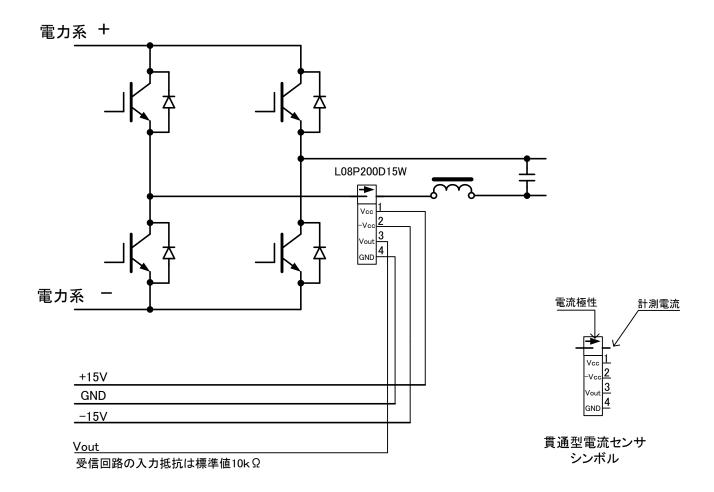
Fig3. 基準回路を 2.5V とする回路

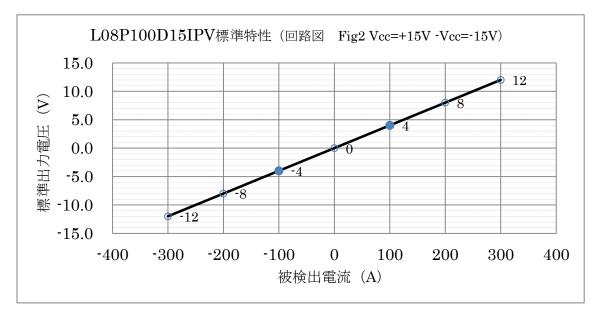
□ Fig3の説明

電流センサの出力電圧の基準値を GND (0V) から「+2.5V 基準」に変換する回路例である。電流検出信号の受信回路の基準電圧が GND でなく+2.5V であるときの変換回路である。被測定電流が OA のとき、出力電圧は 2.5V となる。定格電流を検出したとき出力電圧は 0.6V+2.5V=3.1V である。一方、マイナス方向に定格電流を検出すると出力電圧は-0.6V+2.5V=1.9V となる。

末尾のグラフ4~6に各型番における被検出電流と出電圧の関係を示す。

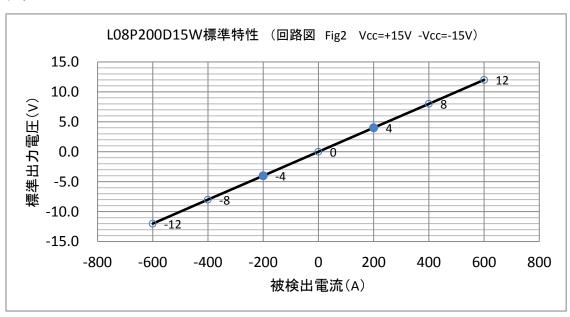
■応用回路



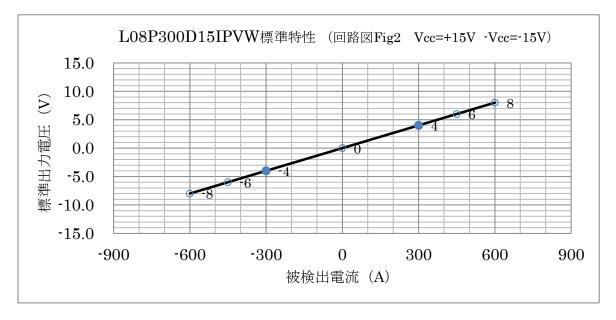

Fig4 インバータ回路への応用

■実装

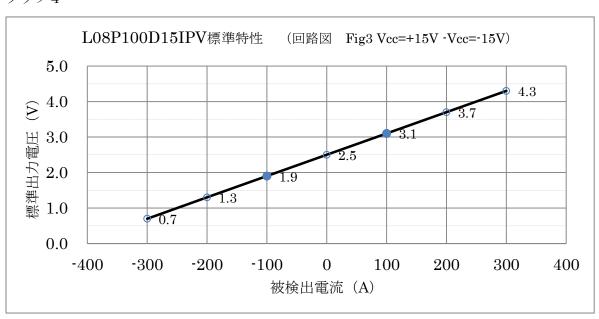
パターン設計例


バスバー設計例

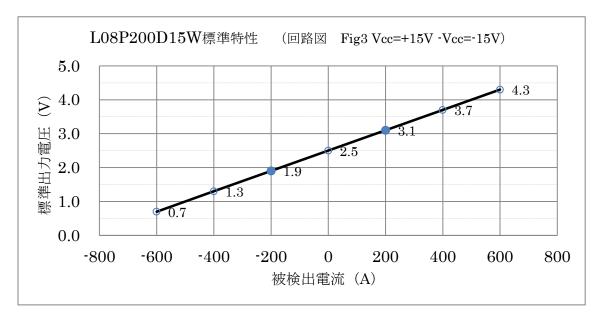
グラフ1


* ●:定格電流に対するセンサの標準出力電圧を示す。

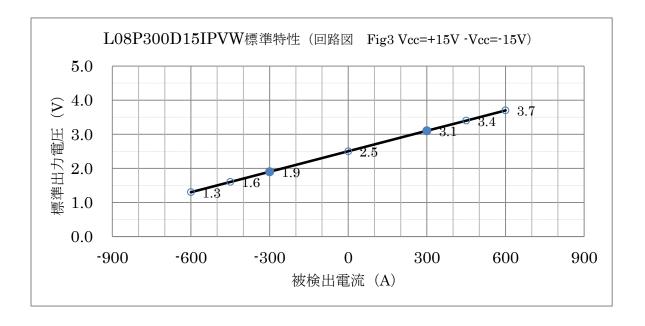
グラフ2


* ●:定格電流に対するセンサの標準出力電圧を示す。

グラフ3


* ●:定格電流に対するセンサの標準出力電圧を示す。

グラフ4


* ●:定格電流に対するセンサの標準出力電圧を示す。

グラフ5

* ●:定格電流に対するセンサの標準出力電圧を示す。

グラフ6

