English

Professional Studio Audio

Audio Equipment & Communication Systems

DIGITAL AUDIO MIXING CONSOLE

NTX600

NTX

Overview

The NTX Audio Mixing Console is a digital mixing console suitable for live broadcasting and program recording mainly on the X CORE that performs audio routing and audio signal processing.

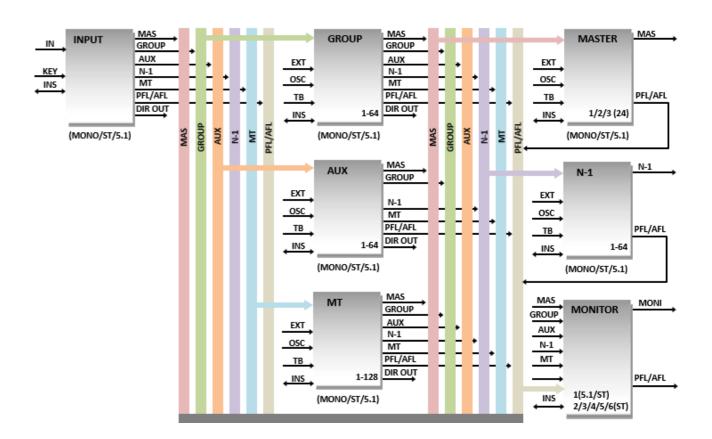
The X CORE has a MEDIA port that supports ST2110-30, AES67, and ST2022-7 standards, being compatible with IP-based next-generation broadcast systems.

Various adjustment knobs and switches are arranged on the console, realizing stress-free operability. It is a digital mixing console that implements various functions to enhance the efficiency of producing programs.

Features

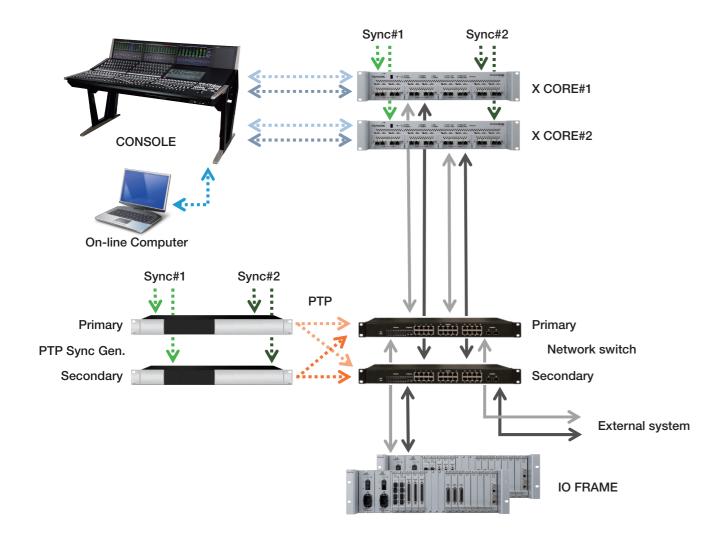
> Original technologies: Latest technologies

- (1) X CORE and IO FRAME are connected by the IP-based protocol and are compatible with the AoIP standard.
- (2) X CORE adopts high-performance audio signal processing with a unique hybrid system of DSP and FPGA. It realizes reduction in rack space and low power consumption through high-density mounting.
- (3) A newly developed signal processing algorithm and high-precision 64-bit floating point arithmetic improve the sound quality in the audio processing, such as equalizer and dynamics.

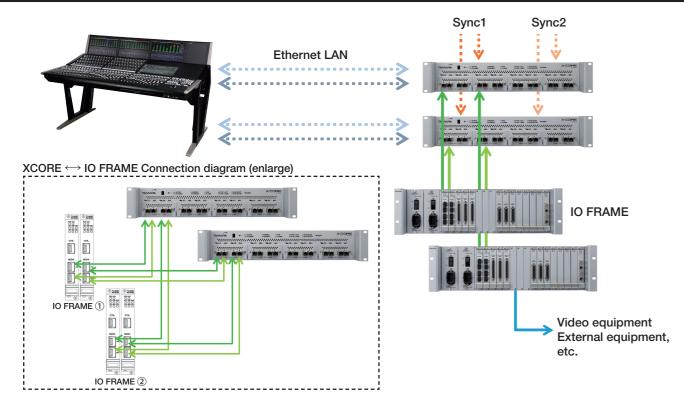

> Operational safety: High safety

- (1) Duplication of the power supply for all units in the system
- (2) Duplication of the transmission paths within the system
- (3) Duplication of the IO FRAME interface card and the internal audio system, ensuring a high level of safety.
- (4) Microphone input achieves headroom 36 dB, enabling construction of a system resistant to sudden excessive input.
- (5) The audio signal processing part and the audio routing part are configured based on firmware, realizing high stability.

> Usability: Excellent operability


- (1) Each channel has ten encoders (NTX800) or six encoders (NTX600). The equipment consists of two encoders, an HA/Trim control encoder and a Pan control encoder, and eight (NTX800) or four (NTX600) function switching encoders, realizing intuitive operability like an analog console.
- (2) Channel and bus parameters can also be manipulated in the center section. A touchscreen panel and encoders allow all parameters to be manipulated without leaving the center section.
- (3) It is equipped with a full-color LCD display which can clearly show channel names and corresponding parameter values. Excellent visibility is achieved by using both numerical values and visual graphs for setting the parameters.
- (4) Center section operations, such as input matrix switching, meter settings, and monitor control, are also possible in the performed in every part of the console.
- (5) It supports a free layout allowing free assignment of input channels and various master faders. Free layout is possible regardless of channel types.

Audio block diagram



input section. When a large-scale system is being built or multiple operators are working, the necessary operations can be

CONNECT IO DIAGRAM

> PLL connection

SPEC

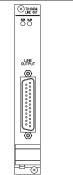
Supply voltage	AC100 - 240V 50/60Hz
Maximum fader number	120ch
Bank/layer	6 bank / 2 layer
Number of fader groups	64 groups
DSP maximum processing	number 1024 ch
DSP maximum processing	bit number 64 Bit
Sampling frequency	48 kHz / 96 kHz
Sync signal input	AES3id/WORD
	VIDEO (NTSC/PAL)
PTPv2 (when ST-2110 is connected)
 Transmission 	20 - 20kHz(Fs=48kHz)
frequency range	20 - 40kHz (Fs=96kHz)
X CORE lines	Maximum 4,096 ch (input)
	Maximum 4,096 ch (output)

NETWORK Card

	TU-6455 NETWORK Card Network interface card for ST2110	
5	Number of MEDIA Ports	SFP Port 1 x Primary & 1 x Secondary
	Number of Control Ports	1 x CTRL Port
	Number of MEDIA port channels	48 kHz: 512 ch 96 kHz: 256 ch
-	Number of MEDIA port streams	7
ec 	AoIP Protocol	SMPTE ST 2110-30 SMPTE ST 2022-7 AES67-2018
	Synchronization	PTP V2/Packet Synchronization
	MEDIA/CTRL Port communication speed	1 Gbps
	Compatible SFP module	1000BASE-T/RJ45 1000BASE-LX/SMF

 Transmission frequency range 	20 - 20 kHz (Fs = 48 kHz) 20 - 40 kHz (Fs = 96 kHz)
 Digital audio signal 	AES3id compliant
	1Vp-p (75Ω unbalanced)
	Input: 16 to 24 Bit
	Output: 24 Bit
	Input/output level: -18/-20 dBFs
MIC input level	-64 to +10 dBu
HA headroom	30/36 dB
LINE input/output level	0/+4 dBu

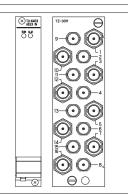
NT/NTX Tamura Resource Network Technology


Option card Common to NT and NTX

MC/LINE NPUT ٥

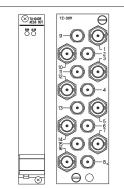
■ 8ch DSUB MIC/LINE IN Card

Audio interface card of analog 8ch input. Mic/Line setting can be changed.


Number of Occupied slots	1 slot
Mic/Line input	balanced type
Number of Channels	8ch
[Mic input] Input level	-64dBu ~ +10dBu
[Mic input] Input inpedance	4kΩ or more
[Line input] Input level	-12~+12dBu (0.1dB step select)
[Line input] Input inpedance	600 / 10kΩ or more

8ch DSUB LINE OUT Card

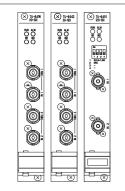
Audio interface card of analog 8ch output.


Number of Occupied slots	1 slot
Line output	balanced type
Number of Channels	8ch
Output level	-12 ~ +12dBu (0.1dB step select)
Output inpedance	55Ω

8ch BNC AES3 IN Card

Audio interface card of 8 channel AES3 input. Change of the ON/OFF setting of SRC is possible. In the 16-channel BNC REAR PANEL, 1-8 of the BNC connector corresponds to the slot on the left of two occupied slots, 9-16 to the input/output connector of the corresponding to the slot on the right.

Number of Occupied slots	1 slot
Format	AES-3id
Number of Channels	8ch AES3
Input inpedance	75Ω unbalanced type
Input sampling frequency (SRC ON)	32~100kHz
Input sampling frequency (SRC OFF)	48 / 96kHz (Synchronized with the system clock)
Number of Input bits	16~24bit



8ch BNC AES3 OUT Card

Audio interface card of 8 channel AES3 output.

In the 16-channel BNC REAR PANEL, 1-8 of the BNC connector corresponds to the slot on the left of two occupied slots, 9-16 to the input/output connector of the corresponding to the slot on the right.

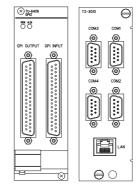
Number of Occupied slots	1 slot
Format	AES-3id
Number of Channels	8ch AES3
Output inpedance	75Ω unbalanced type
Output signal level	1 Vp-p
Output sampling frequency	48 / 96kHz (Synchronized with the system clock)
Number of output bits	24bit



HD-SDI Card / 3G-SDI Card / 12G-SDI Card

Interface card compatible with HD-SDI card / 3G-SDI / 12G-SDI.

	HD-SDI Card TU-6418	3G-SDI Card TU-6442	12G-SDI Card
Number of Occupied slots	1 slot	1 slot	1 slot
Currented CDI formate	720p 50/59.94/60Hz 1035i 59.94/60Hz 1080i 50/59.94/60Hz 1080p 23.98/24/25/29.97/30Hz 1080psF 23.98/24Hz		2160/59.94p
Supported SDI formats		1080p 50/59.94/60Hz 1080psF 25/29.97/30Hz	
Embedded audio standard	SMPTE299M	SMPTE299M	SMPTE ST299
Input sampling frequency	48kHz	48kHz	48kHz
Number of Input bits	16~24bit	16~24bit	16~24bit
Number of Input channels	8ch / IN BNC	8ch / IN BNC	32ch
Loop Through output	Reclock active through output	Reclock active through output	


	Switching Optical In / Coaxial In, SRC ON/OFF set	ing, setting change of 64ch/56ch for IN/OUT are possible.
	Number of Occupied slots	1 slot
) >> *	Format	AES-10 / AES-10id
×.	Number of input channels	48kHz : 56 / 64ch 96kHz : 28 / 32ch
	Number of output channels	48kHz : 56 / 64ch 96kHz : 28 / 32ch
9 5	Channel alignment	Double channel
	Input sampling frequency (SRC ON)	48 / 96kHz ±100ppm
=	Input sampling frequency (SRC OFF)	48 / 96kHz (Synchronized with the system clock)
\otimes	Number of Input bits	16~24bit
	Output sampling frequency	48 / 96kHz
	Number of Output bits	24bit
	[Coax] Input inpedance	75Ω unbalanced type
	[Coax] Output inpedance	75Ω unbalanced type
	[Opt] Supported optical cable	ISO/IEC 9314-3. MM 62.5/125nm Numerical Aperture 0.275

This card is audio interface card to connect to Dante network. It is possible to maximum 64 channels input, 64 channels output.

Sampling frequency (Fs)	48kHz / 96kHz
Input / Output (Fs=48kHz)	Max 64 input, 64 output
Input / Output (Fs=96kHz)	Max 32 input, 32 output
Transmission Protocol	Dante
Dante Connector	RJ-45 type /Neutrik etherconConnector

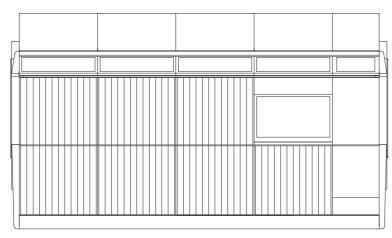
Audinate®, the Audinate logo and Dante are trademarks of Audinate Pty Ltd.

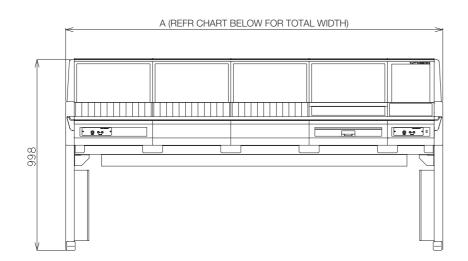
GPIO Card

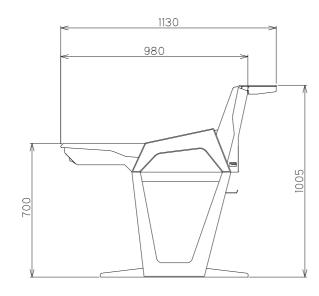
Interface card for 24-input / 16-output of general-purpose control signals.

IGEII	

[GPI]	
Function	Description
Link Function FU/BT	When On, the specified FU function is set to On or BT is On
Link Function Remote	When On, the specified remote function is set to On
Link Function AVL	When On, AVL function is set to On
System Tally 1	When On, indicator LAMP1 for OSC and TB prohibit control is lighted
System Tally 2	Indicator LAMP 2 is lighted
System Tally 3	Indicator LAMP 3 is lighted
Monitor Cut	When On, the specified monitor is disconnected
Monitor Dim	When On, the specified monitor is dimming
Output Matrix switching	When On, Out Source of specified TR-Link channel is altered
Send Ext Int Disable	When On, the Ext Int function of the specified Bus is disabled
Input Only	For GPI Link
TB interruption	When On, TB audio interruption is generated in the specified Bus
OSC interruption	When On, OSC interruption is generated in Master Bus
Moni Source switching	When On, Monitor Source is changed
GPI REM Sw	When On, console [REM] button is On

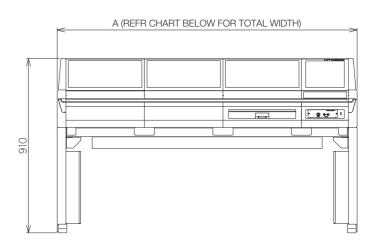

[GPO]

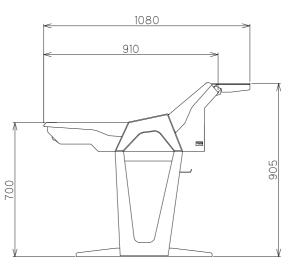

Function	Description
Link Function Remote	On output when the function is in the specified status
Console Mode Notification	On output for the specified Console Mode
OSC On Notification	On output when OSC is On
GPI Link	Output being linked with the specified GPI state
PFL On/Off Notification	Output PFL On/Off status
AFL On/Off Notification	Output AFL On/Off status
FU On	Output FU On/Off status of specified FU number
TB status Notification	Output of TB interrupt status to specified Bus
Mic On	Output of Mic On status of specified FU number



Dimensions

NTX800 CONSOLE


<a: according="" bay="" number="" of="" to="" total="" width=""></a:>									
1BAY	2BAY	3BAY	4BAY	5BAY	6BAY	7BAY	8BAY	9BAY	10BAY
745	1155	1565	1975	2385	2795	3205	3615	4025	4435
									(mr



Dimensions

NTX600 CONSOLE

A: TOTA	AL WIDTH	ACCOR	DING TO	NUMBE	R OF BA
1BAY	2BAY	3BAY	4BAY	5BAY	6BAY
745	1155	1565	1975	2385	2795
					(mm)

Excellent operability

> Two parameter operation methods

Two methods are available for channel parameter operation, namely, the center-assign method, which assigns channels on a panel at a single location, and the channel-based method, which performs the operation for each channel as in the case of an analog console. When you want to concentrate on a single channel sound, the center-assign method is most suitable because it allows you to operate all parameters at once. On the other hand, the channel-based method is convenient when urgency is required, for example, during live broadcasting, because it allows the engineer to operate multiple channels at the same time. These two operation methods are suitable for different situations.

NT880 allows operation using either method so that both methods can be selected in accordance with the situation and the level of preference of a mixing engineer. For the channel-based method in particular, high operability for a quick response to the situation that changes moment by moment is achieved by placing 14 encoders per channel in order to minimize the function switching operation.

> Channel layout editing functions

"Add new channels," "delete channels no longer in use," or "add a new microphone channel to existing active channels because another microphone has been added." As in the case of these examples, it will be ideal if you can flexibly change the channel layout in accordance with the situation instead of having a channel layout that is fixed once it is set.

To enable such an operation, NT880 is provided with sophisticated channel layout editing functions (such as channel addition, deletion, copying, and cut and insert) on the touch panel.

This feature intuitively and instantaneously enables mixing engineers to set up an ideal channel layout.

Flagship model pursuing optimal ease of operation to enable high-level creative work

Expandable to large-scale systems

> Number of physical faders

NT880 can be configured with up to 150 physical faders. Two or more consoles in different cabinets can be operated as a single console system as long as the number of installed faders is within the maximum number of faders. (*1)

> Operator-specific section concept

When two or more engineers perform mixing operations at the same time, other engineers' work can be interrupted or their specific settings may be lost if one engineer needs to perform an operation that affects the entire console. To prevent such inconveniences, TAMURA has introduced the section concept.

A 'section' specifies the operation range of one engineer. The extent of the effect from one operation is confined to the designated section only.

A mixing engineer can also set Pre-Fader Listen (PFL) and After-Fader Listen (AFL) solo functions independently for each section. Therefore, engineers are provided with conditions under which they appear to be working on separate console systems.

One console system can be divided into a maximum of four sections.

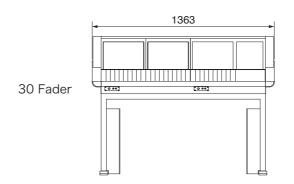
> High-performance processor

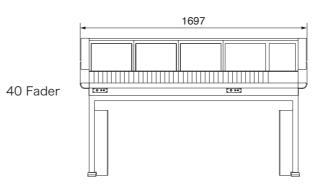
NT880 has a control system that is built on the assumption of simultaneous operations by two or more engineers.

Even if there is a simultaneously imposed workload of four engineers, there is no delay in the response time of the operation panel displays or the adjustments made for audio.

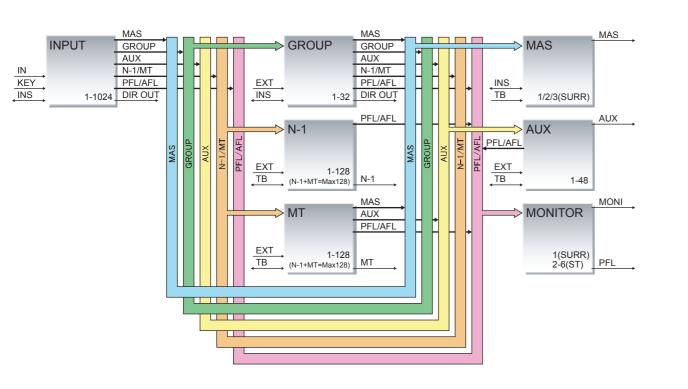
(*1) There are cases in which restrictions apply to the installation position, distance, and other factors

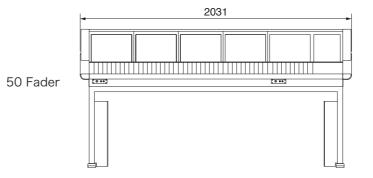
Specifications

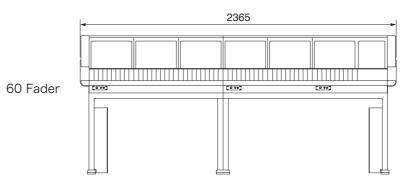

Console	
Supply voltage	AC100-240V 50/60Hz
Maximum number of physical fa	aders 150 faders
Bank / Layer	6Bank / 2Laye
Number of fader groups	32Group

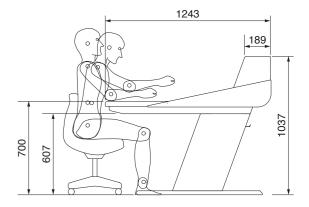

> Audio channel (Fs=48kHz)

■ Master Bus	Maximum 24 buses (3 surround)
■ Group Bus	Maximum 32 buses
Aux Bus	Maximum 48 buses
N-1 / MT Bus	Maximum 128 buses
= AFL	1 surround
AFL / PFL	3 stereo
■ PFL	1 stereo
Main Monitor	1 surround+stereo


HA Gain	+10dBu~-64dBu
= Trim	+24dB~-24dB
Delay	5000ms or more
■ Filter	Filter1 (HPF/Notch) Filter2 (LPF/Notch)
Equalizer	4Band (Support for all frequency bands)
Dynamics	Compressor 2 channels Gate/Expander 1 channel


Dimension





Flexible Operation

> New parameter operation method

The arrangement of seven encoders on the compact surface allows channel-oriented operation, which is useful in urgent situations such as live broadcast.

Also, the equipment uses a new operation method, bay-oriented operation, in order to allow the user to concentrate on controlling one channel in hand.

In bay-oriented operation, functions to control channel parameters are incorporated into all the encoders in the same bay as that of the channel. This allows simultaneous access to most of the parameters on a channel.

You can freely switch between these two operation methods, instead of configuring initial settings to select either of them. It is possible to select the appropriate method according to the circumstances, which can realize efficient creation of contents. When using all channel parameters, you can perform center assign operation, through which parameters are comprehensively manipulated on the touch panel.

Touch Panel Surround Panner

In order to support creation of high-level surround sound, it has been made possible to perform surround panning with the touch panel.

You can select mouse mode, which determines the pan position by taking into consideration in what direction and at what distance you drag, in addition to normal mode, in which the exact touched position is specified as the pan position. Also, the use of the Pan Link function allows you to automatically specify the pan position of the R-side microphone according to that of the L-side microphone when using two monaural microphones as a stereo pair.

The equipment supports creation of surround sound during a broadcast requiring immediate responses, not simply by replacing a joystick but by allowing comfortable operation.

High-spec Compact Model Where Functions of the Highest-grade Model Are Kept within Reach

Greatly Enhanced Functions

Consolidated Control of Bus Outputs

As the process of content creation is becoming more complicated, the number of bus outputs to be monitored is increasing.

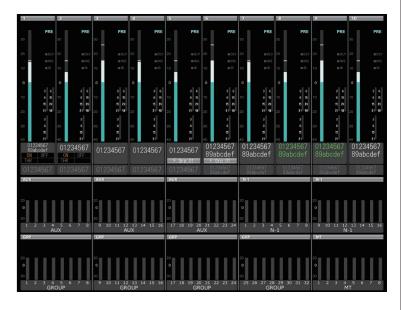
In an environment where installation spaces are limited, it may be difficult to arrange external meter units. Therefore, the equipment is capable of simultaneously displaying the meter readings of 80 buses in the bottom of the channel meter.

You can always display the output meter readings of buses to be monitored without changing the screen or settings.

Since the operator can at any time freely change the buses to be metered, it is possible to build an appropriate metering system according to the circumstances.

> Inheriting Enhanced Functions

You can use the same sound processing parameters as those of the higher-grade model NT880.


Two compressors are used for each individual channel, and algorithms for full-four-band EQ and the like are exactly the same.

Also, the equipment has a delay compensation function for multistage bus assignment, allowing creation of detailed sound.

> User Level Setting

The equipment has the Administrator Lock mode, which limits the range of operation.

When an operator who does not understand the entire audio system, such as a director, uses the equipment, this mode can disable, in advance, functions that may lead to fatal erroneous operation.

> DAW Control Functions

In order to ensure efficient use of facilities,

post-production work is occasionally carried out even in a sub broadcast studio.

The equipment is compatible with DAW control functions in order to support post-production work in a sub studio. (Option)

Channels for DAW control are not held in the same specific layer, but can be freely placed in any bank and any layer, similarly to normal audio channels.

For example, on the same control surface, it is possible to control music tracks with a DAW while operating a narration recording microphone.

The equipment also incorporates other functions to support complicated post-production work, such as automation mode control and track arming.

Specifications

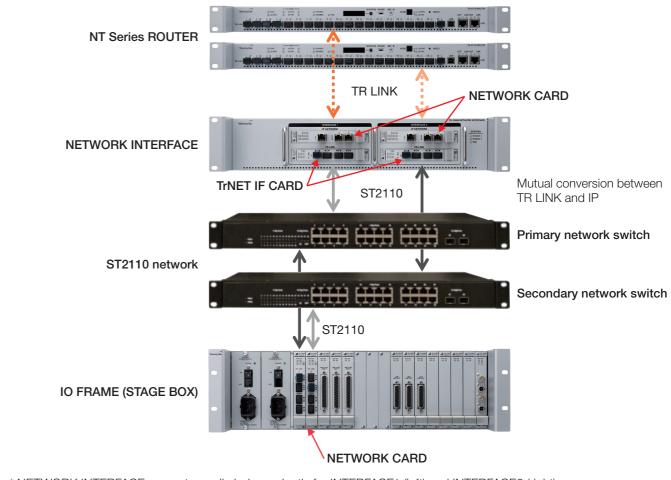
Console	
Supply voltage	AC100-240V 50/60Hz
Maximum number of physical faders	20/30/40/50 faders
Bank / Layer	6Bank / 2Layer
Number of fader groups	32Group

> Audio channels (Fs=48kHz)

■ Master Bus	Maximum 24 buses (3 surround)
■ Group Bus	Maximum 32 buses
■ Aux Bus	Maximum 48 buses
N-1 / MT Bus	Maximum 128 buses
= AFL	1 surround
= AFL / PFL	3 stereo
= PFL	1 stereo
Main Monitor	1 surround+stereo
Sub Monitor	3 channels (Stereo)

Audio control parameters

HA Gain	+10dBu~-64dBu
Trim	+24dB~-24dB
Delay	5000ms or more
■ Filter	Filter1 (HPF/Notch) Filter2 (LPF/Notch)
Equalizer	4Band (Support for all frequency bands)
Dynamics	Compressor 2 channels Gate/Expander 1 channel


NETWORK INTERFACE

> Overview

The device converts TR LINK signals of NT Series (NT880/NT660/NT900/NT900C) into IP signals compatible with SMPTE ST2110.

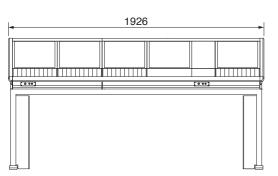
Conversion system between NT Series TR LINK and ST2110

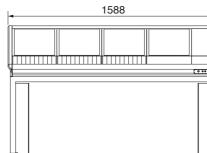
The system converts NT Series TR LINK signals to ST2110 signals via NETWORK INTERFACE. The connection of the IO FRAME to the ST2110 network enables transmission of audio signals to and from the ROUTER and control of the HA GAIN/P48 settings of MIC/LINE IN CARD.

* NETWORK INTERFACE converts media independently for INTERFACE1 (left) and INTERFACE2 (right).

Specifications

Item	
Power supply	AC100 - 240V 50/60Hz ×
Power consumption	200W or less
Interface	TrNET IF CARD (
	NETWORK CARD (
Protocol	TrNET IF CARD (
	NETWORK CARD S
	5


Dimension


30 Fader

50 Fader

40 Fader

Specifications

(maximum 2)

(maximum 2)

Original protocol of Tamura

SMPTE ST2110

SMPTE ST2022-7

Specifications

> AUDIO signal

(1) AUDIO signal transmission

It outputs 512ch FS48kHz audio signals inputted from the TR LINK to the IP network. It outputs 512ch FS48kHz audio signals inputted from the IP network to the TR LINK. * The channel rows are the same for TR LINK and IP (ch1 of TR LINK becomes ch1 of IP). * There is no audio MTX function inside NETWORK INTERFACE.

(2) Bit number conversion

It performs conversion between TR LINK 32bit floating point and IP 24bit fixed point.

(3) Audio level offset

It is equipped with a voice level offset function used for the purpose of securing the digital reference level (18 dB FS or 20 dB FS) and the microphone headroom (30 dB or 36 dB). (Level setting is performed with WEB UI.)

Control signal

Control signals between TR LINK and IP are either processed within NETWORK INTERFACE or converted into each other before transmission.

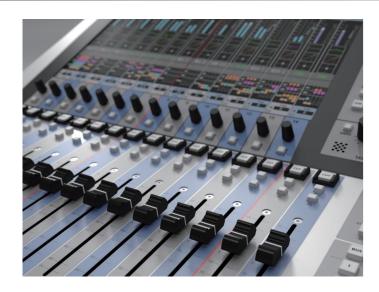
Voice synchronization

TrNET IF CARD operates in sync with the audio signal input from TR LINK.

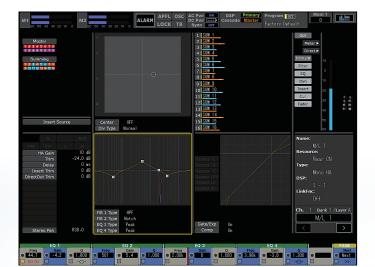
NETWORK CARD operates by synchronizing audio with the PTP signal input from the IP network.

* If TR LINK (ROUTER) and the IP network (PTP) are not synchronized, noise may appear in the audio.

* Each CARD installed in NETWORK INTERFACE does not have the function of built-in sample rate converter. The synchronized state should always be maintained.


The specifications and standards that NETWORK CARD complies with are shown in the table below.

No	Name of standard	Overview
1	AES67 2018	AES standard for audio applications of networks - High performance streaming audio over IP interoperability
2	SMPTE ST 2110 10	Professional Media Over Managed IP Networks : System Timing and Definitions
3	SMPTE ST 2110 30	Professional Media Over Managed IP Networks : PCM Digital Audio
4	SMPTE ST 2022 7	Seamless Protection Switching of SMPTE ST 2022 IP Datagrams
5	NMOS IS 04	Discovery and Registration Specification
6	NMOS IS 05	NMOS Device Connection Management Specification



Digital Audio Mixer

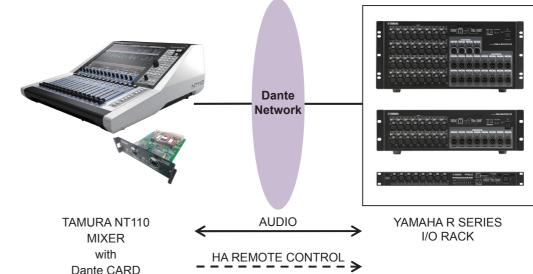
Operability of trust

- 16 Analog input/output (MONO), AES3id2 input/output (STEREO), and 2 auxiliary input (STEREO) as the standard equipment
- Audio formats such as AES, MADI, SDI, DANTE can be linked with NT016 via 2 expansion slots. (option)
- External Remote Control for Input/Output can be achieved via GPIO cards installed in the expansion slots for various applications.
- Sampling Frequency;48K/96KHz, selectable for High-quality audio program production.

- Compact design mountable in a EIA 19 inch width rack
- 2 Layer (AB sides per each Layer), 3 Banks enable 80ch Logic CH with 16ch physical faders incorporated.
- Incorporated Surround sound monitor output enables Surround sound product ion at Outside broadcasting field.
- 2 sets of NT016 can be Cascaded to have a Physical 32ch. Fader Console (option)

M1 50 50	40 30 20 10	M2	0 50 40 30 2			CK TB	DC Pwr	Cascal	de Master	Factory		-18.0	16
0 10 10 10 15 15 15 15 15 15 15 15 15 15	M-3 M1-4	0175 IN 1 6 6 5 7 6 7 7 6 7 7 7 7	017 D17 115 1 0 0 55 25 0 55 1 0 0 55 25 1 0 0 55 25 1 0 0 55 1 0 0 0 55 1 0 0 55 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10 1185 20 3 30 55 50 50 50 50 50 50 50 50 5	M2-3 M2-4	017 017 185 8 8 8 5 2 4 5 7 8 5 2 4 5 7 8 7 4 5 7 7 7 7 8 7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	017 017 105 115 0 0 5 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 10 20 40 40 50 60 50 50 50 50 50 50 50 50 50 50 50 10 50 50 50 50 50 50 50 50 50 50 50 50 50	0 10 20 40 50 50 50 50 50 50 50 50	11 13 15 JM 9 - 16	0 10 20 1 20 1 30 50 50 50 50 50 50 50 50 50 50 50 50 50	10 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 20 30 40 50 50 50 50 50 50 50 50 50 5
1 FOR	2	13	4	5	6	7	8	9	10	11	12	18	14
		0 DLY	O DLY			0 DLY		0 DLY	0 DEY		0 DLY	0 DLY	0 D0
0 0 0 3	10 0 20 3	10 0 20 3	10 0 20 3	20	10 0 20 7	10 0 20 3	10 ° 0 3	10 0 20 3	10 0 20 7	10 0 20 3	10 10 3 20 3 20 15	10 0 H 0	10 0 20 3
10 15 11	30 15 21	30 15 21	30 15 21	30 15 21	30 15	30 15 21	30 15 81 40 6	30 15 21	30 15 21	30 15 21	30 15 20 21	30 15 21	30 15 21
0 6 15 10 21	40 6 15 50 ม	50 15 50 21	50 E	40 6 15 50 21	40 6 50 15 21	40 6 15 50 8	50 27	50 E	40 6 75 50 24	50 15 50 25	50 15 R	50 E	50 E
	60 1 1	60 1 4	co I I 4	E0 1 43	E0 4		00 U	60 4 4	E0 4	ер ч П		00 व	0 U U
						\sim				\sim	7		
										$ \land$			
					KH.					ΙĘΗ			
•							•						
	M/L 2			\$1.9/10	ST 11/12	M/L 7		SUB 1/2	S1 19/20		AES3 2		SUM2
	S1 3/4	\$1 5/6	M/L 4	M/L 5	M/L 6	\$1 13/14		\$1 17/18	SUB 3/4		\$1 23/24	F.Grp 1	F.Grp (
1234	M1 5 5 7 8	M1 1 2 3 4 5 6 7 8	M1 1 2 3 4	M1 1 2 3 4	M1 5 5 7 5	M1 1 2 3 4 5 6 7 8	M1 1 2 3 4 5 6 7 8	M1 1 2 3 4 5 5 7 8	M1 1 2 3 4 5 6 7 8	M1 23	M1 1 2 3 4 5 5 7 8	M1 123	M1 67
M2 5 6 7 8	M2 5 6 7 8	M2 5 6 7 8	M2 5 8 7 8	M2 5 6 7 8	M2 5 7 8	M2 5 6 7 8	M2 5 6 7 8	M2 5 6 7 8	M2 7 7 7	M2 5 8 7 8	M2 2 3 4	M2 5 8 7 8 1 2 3 4	123
UM 9 10 11 12 13 14 15 16	SUM 01 6 7 8 13 14 15 16	SUM 0 6 7 8 9 10 11 12 13 14 15 16	SUM 0 10 11 12 13 14 15 16	SUM 5 0 112 3 14 15 16	SUM 8 10 11 12 13 14 15 15	SUM 3 10 11 12 13 14 15 15	SUM 0 6 7 8 0 10 11 12 13 14 15 16	SUM 5 10 11 54 15 16	SUM 0 6 7 8 9 10 11 12 13 14 15 16	SUM 9 10 11 12	SCM 9 10 11 12 13 14 15 16	S.M 8 12	SUM 5 6 7
HA Gain	HA Gain	HA Gain	Trim	Trim	Trim a 3.0	HA Gain	HA Gain	Trim	Trim	Trim	Trim © 0	Trim	Trim
P48	P48	P48				P48	P48	i i		i i	ŏ	ě.	

- Availability of Power redundancy which is a prime requirement for live broadcasting events for the highest reliability.
- Audio digital signal processing redundancy despite of the size of portable mixer. (option)


Portable Model with Inherited Functions RE-Liability of NT Series

Rio Remote

> Overview

Rio Remote is a function to remotely control the head amp parameters(HA GAIN and +48V) of YAMAHA R SERIES I/O RACK from NT110 via Dante. By connecting NT 110 and R SERIES to the same Dante network.

it remote control the head amp parameters of R SERIES in real time while mutually transmitting voice.

> Corresponding models

Maker	Product	
TAMURA	NT110 Digital Audio Mixer	Digital Audio Mixer
TAMURA	TU-6439 Dante CARD	NT110 Dante OPTION CARD
YAMAHA	Rio3224-D	I/O RACK
YAMAHA	Rio1608-D	I/O RACK
YAMAHA	Ri8-D	I/O RACK
YAMAHA	Rio3224-D2	I/O RACK
YAMAHA	Rio1608-D2	I/O RACK

Multi Meter

> Corresponding models

This is a multi meter that measures and displays the LOUDNESS value, VU value, PEAK value of the input signal. AES 3 - 2009 and LTC (TIME CODE), GPI are carried in the input.

> Main function

- Various LOUDNESS calculation display
- VU / PEAK / TRUE PEAK indication
- LTC indication
- AES 3 2009 digital audio input
- GPI (start / stop / pause of average LOUDNESS operation and load of PRESET)

As of	October	2018

Specifications

> Overall Rating

Dimensions (without Side panel)	
490(W)×22	22(H)×606(D)mm
(Protruding pa	arts not included)
430(W)×220).5(H)×550(D)mm
(FRONT/SIDE PAN	IEL not included)
■ Weight	16.5 kg
= AC 100	- 240V, 50/60Hz
= DC	12V/14.8V
Power Consumption	150W
Operating free-air temperature range	-10~ 40°C
Number of faders	16 Fader
Bank/Layer	3Bank/2Layer

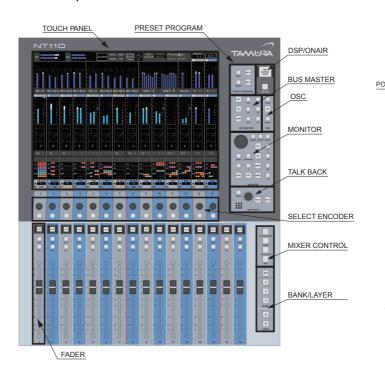
> Audio Channels (Fs=48kHz)

■ Master Bus	2ch (5.1Surround+STEREO)
Summing Bus	16ch (MONO)
■ AFL Bus	1ch (5.1Surround+STEREO)
■ PFL Bus	1ch (Stereo)
Monitor Out	1ch (5.1Surround)
Headphone Out	1ch (Stereo)

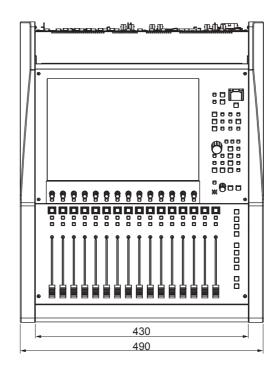
> Audio control parameters

Audio Reference Input Level	
(Analog MIC)	+10 ~ -64dBµ
(Analog LINE)	+4dBµ
Audio Reference Output Level	
(Analog LINE)	+4dBµ
Audio Reference Input/Output	Level
(Digital)	+10dBFS / -64dBFS
■HA Headroom	20~30 dB

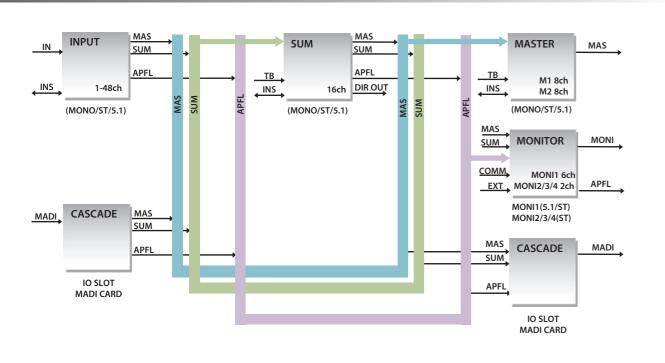
> Option


- DSP CARD (BACK UP REDUNDANT DSP)
- OPTION CARD
 AES3id IO CARD (4ch IN + 4ch OUT BNC)
 GPIO CARD
 MADI CARD (1Coax/10pt)
 Dante CARD
 MIC / LINE IN CARD
 LINE OUT CARD

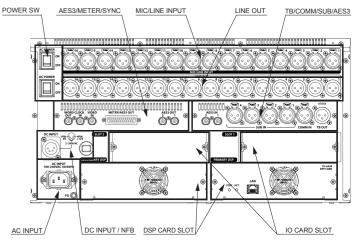
 Multi Meter

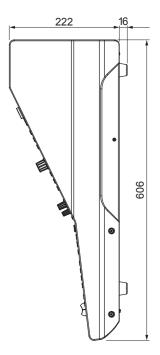

■ Storage case

Control Panel Description


Front panel

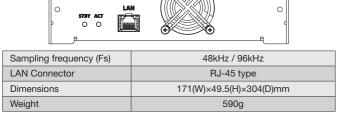
Dimensions




Audio block diagram

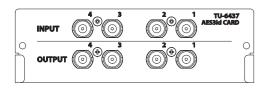
28

Rear panel


NT110 with Tamura Resource Network Technology

Option card

DSP Card


This card is a card with built in audio signal processing, audio routing and control functions.

It is possible to form a redundant system is to implement a card. TU-6436

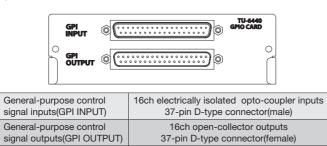
AES3id Card

Audio interface card of 4ch AES3 input / 4ch AES3 output.

AES3 id INPUT				
Format	AES3id compliant			
Number of Channels	4ch AES3			
Input Sampling frequency	48kHz/96kHz (SRC Off) 30kHz~100kHz (SRC On)			
Number of input bits	16~24bit			
Connector	BNC(Coaxial/75Ω) x4			
AES3 id OUTPUT				
Format	AES3id compliant			
Number of Channels	4ch AES3			
Output Sampling frequency	48kHz/96kHz			
Number of output bits	24bit			
Connector	BNC(Coaxial/75Ω) x4			
General				
Dimensions	129(W)x40(H)x152(D)mm			
Weight	210g			

Dante Card

This card is audio interface card to connect to Dante network. It is possible to maximum 64 channels input, 64 channels output.

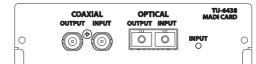


Sampling frequency (Fs)	48kHz / 96kHz
Input / Output (Fs=48kHz)	Max 64 input, 64 output
Input / Output (Fs=96kHz)	Max 32 input, 32 output
Transmission Protocol	Dante
Dante Connector	RJ-45 type /Neutrik etherconConnector
Dimensions	129(W)x40(H)x152(D)mm
Weight	150g

Audinate ®, the Audinate logo and Dante are trademarks of Audinate Pty Ltd.

GPIO Card

Interface card for 16-input / 16-output of general-purpose control signals.


129(W)x40(H)x152(D)mm

168g

Dimensions Weight

MADI Card

Audio interface card of MADI 64ch input / 64ch output

Format	AES10 compliant		
	48kHz/96kHz (SRC Off)		
Input Sampling frequency	48kHz/96kHz±100ppm (SRC On)		
Output Sampling frequency	48kHz/96kHz		
Number of input bits	16~24bit		
Number of output bits	24bit		
Number of input channels	64ch/56ch (Fs 48kHz) 32ch/28ch (Fs 96kHz)		
Number of output channels	64ch/56ch (Fs 48kHz) 32ch/28ch (Fs 96kHz)		
Coaxial Connector	BNC (Coaxial/75Ω)		
Optical Connector	MM 62.5/125µm (SC Connector)		
Dimensions	129(W)x40(H)x152(D)mm		
Weight	180g		

MIC/LINE IN CARD

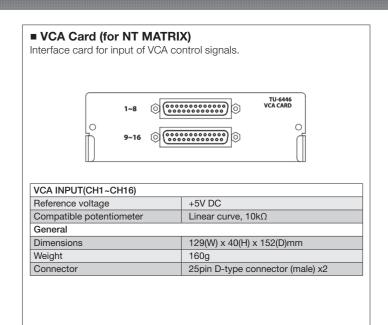
This card is audio interface card that inputs microphone level and line level analog audio signals.

	TU-6443 OCCORDOCODO MIC/LINE IN CARD OCCORDOCODO OCCORDOCODO OCCORDOCODO OCCORDOCODO OCCORDOCODO OCCORDOCODO		
MIC/LINE INPUT(CH1~CH4)			
Audio Reference Input Level	-64dBu - +10dBu		
Headroom	20 - 36 dB		
Input inpedance	More than 4kΩ		
Phantom power supply(1ch)	48V/10mA		
LINE INPUT(CH5~CH8)			
Audio Reference Input Level	0dBu/+4dBu		
Input inpedance	More than 10kΩ		
General			
Transmission frequency range (Fs=48kHz)	20 - 20,000Hz		
Transmission frequency range (Fs=96kHz)	20 - 40,000Hz		
Sampling frequency (Fs)	48kHz/96kHz		
Dimensions	129(W)x40(H)x152(D)mm		
Weight	210g		
Connector	25pin D-type connector(female)x2		

■ LINE OUT Card

This card is audio interface card that outputs line level analog audio signals.

LINE OUTPUT(CH1~CH8)		
Audio Reference Input Level	0dBu/+4dBu	
Output inpedance	less than 55Ω	
General		
Transmission frequency range (Fs=48kHz)	20 - 20,000Hz	
Transmission frequency range (Fs=96kHz)	20 - 40,000Hz	
Sampling frequency (Fs)	48kHz/96kHz	
Dimensions	129(W) x 40(H) x 152(D)mm	
Weight	190g	
Connector	25pin D-type connector (female)	


NT MIX

NT Mix (Windows software, free of charge) is used for displaying the touch panel of the NT110, establishing various settings, restoring the settings, etc.

Mixing operation of NT110 is performed in the Mixer menu. When the connection status is Online, this screen operates linked to the control panel of the NT110 and can be used as a redundant control panel during operation. The selection of Bank / Layer on this screen is independent from NT110. Therefore, it can also be used as an extended fader panel when the number of physical fader on NT110 is insufficient.

NT Mix download page https://www.tamura-ss.co.jp/jp/

Overview

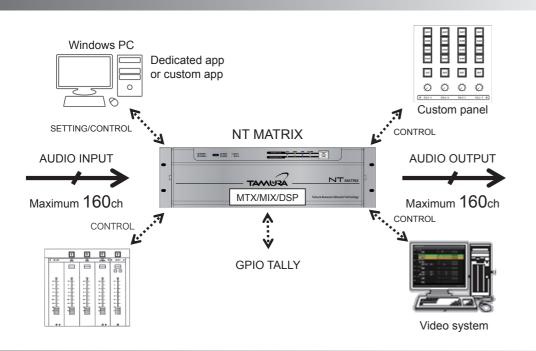
NT MATRIX is a system interface with a built-in DSP processor that performs routing matrix, mixing, and various processing of audio signals. It supports various forms of use by combining audio input and output cards and control cards. It also supports redundancy of power supply input and redundancy of audio signal processing unit (optional), and therefore is ideal for relaying, live broadcasting, program recording, and television and radio studios requiring high reliability.

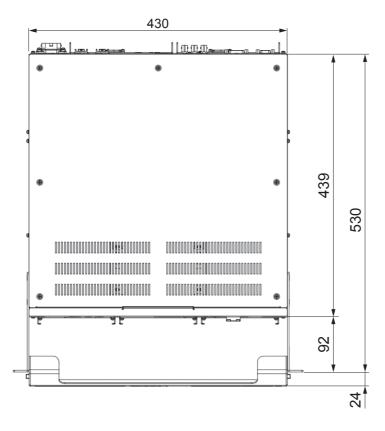
Features

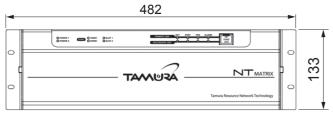
> Function - rich function

(1) 160 ch x 160 ch AUDIO MATRIX ROUTER
 (2) Configurable DSP audio signal processing
 (3) Six card slots (two of which support 64 ch audio input and output)
 (4) Analog, digital audio I/O cards and option for GPIO and VCA control cards
 (5) LOGIC function for logical setting of button ON/OFF status of GPIO and the touch panel
 (6) GUI application that allows flexible configuration of user interface
 (7) Size appropriate for mounting on EIA 19 inch rack

> Original technologies - advanced technology


- (1) Built-in high dynamic range audio signal processing by 32-bit floating point arithmetic.Mixing without considering the internal level diagram is possible
- (2) Selection of the signal processing function by the DSP configuration


(1)	Redundant configuration with two AC inputs for power supply
(2)	DSP CARDs equipped with audio signal processor and controller can be redundantly configured to support various applications requiring high reliability (optional)
PRIMARY DSP SECONDARY DSP	The system is constructed on a firmware basis that does not use advanced OS and therefore achieves high stability and high-speed startup
073	SLOT 1 EX
1	
	Tamura Resource Network Technology


> Operational safety - high safety

NT MATRIX System

Dimensions

Custom UI

- Equipped as standard with GUI software that can customize operation parts
- DSP parameters are freely assigned to operation parts
- Parts such as buttons, faders, meters, lamps, texts, etc. are available as operation parts
- Customization is possible for the operation parts such as their color, characters, and sizes
- Graphical and design-friendly GUI can be constructed by the bitmap import function
- Test of GUI operation in the offline environment by EMULATE MODE

Specifications

Items	
AUDIO ROUTER	160ch x 160ch
DSP PROCESS	32in x 32out DSP x 6
DSP FUNCTION	32in x 32out Mix Matrix o
CONTROL PORT	LAN/RS422SERIAL/GPIC
SYNCHRONIZED INPUT SIGNAL	WORD CLOCK/VIDEO
POWER SUPPLY	AC100-240V 50/60Hz
OPERATION TEMPERATURE	-10 ~ 40 °C
EXTERNAL DIMENSIONS (WxDxH)	482 x 554 x 133

Option (Common to NT110 refer to P.30~31)

Items	
DSP CARD	Redundancy DSP CARD
MIC/LINE INPUT CARD	MIC INPUT 4ch + LINE IN
LINE OUTPUT CARD	LINE OUTPUT 8ch
AES3id CARD	AES3id INPUT 4ch + AES
MADI CARD	MADI INPUT 1ch + MAD
Dante CARD	Dante 1ch (Primary & Sec
GPIO CARD	GPI INPUT 16ch + GPI O
VCA CARD	VCA INPUT 16ch

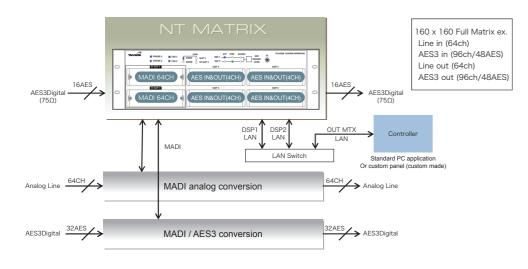
Specification

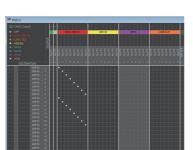
or Filter/Limitter , AUD , Internal OSC O/VCA

Specification

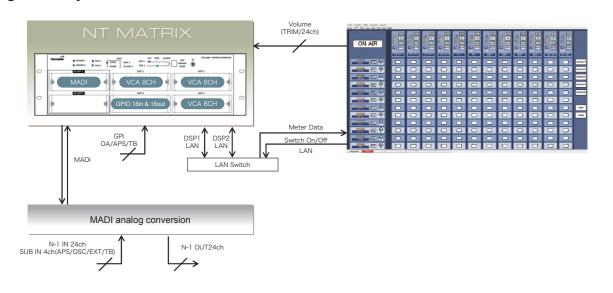
NPUT 4ch

S3 id OUTPUT 4ch

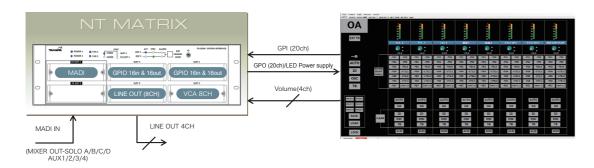

OI OUTPUT 1ch(OPTICAL & COAXIAL)


condary)

OUTPUT 16ch

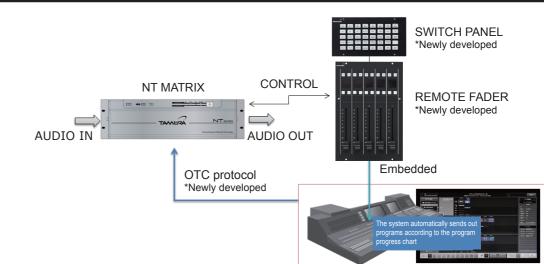

Example of application

Audio Router (Matrix)



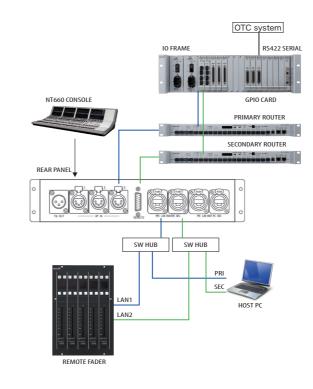
N-1 Sending back system

Output Matrix



OTC system

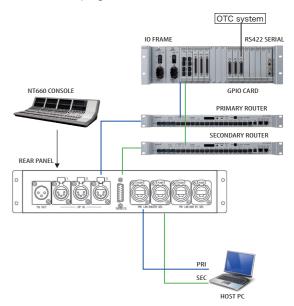
> Overview


The NT MATRIX OTC system has the function of performing audio processing for an automatic transmission system of news programs. This system receives instructions on the audio part from the OTC system (video equipment) that automatically transmits the program according to the program progress chart (scenario, cue sheet), and performs audio matrix switching and volume control with a fader.

> NT MATRIX OTC system

> NT660+REMOTE FADER OTC system

Each REMOTE FADER channel is specified as NT660 MTX audio input material by the OTC system. The CONSOLE FADER channel and REMOTE FADER channel, assigned as MTX audio input material, operate being linked together.

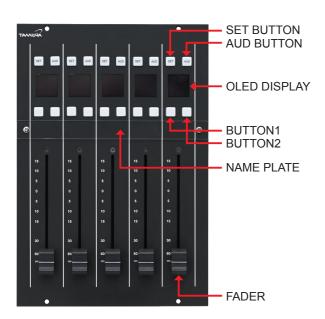


Video system (automatic news delivery system: OTC)

> NT880/NT660 OTC system

The NT880 Input fader is remotely controlled by the fader level and fade time, specified by serial command control inputted via an OTC terminal.

When the fader is touched during the operation of changing the audio level, the change operation is terminated, keeping the audio level fixed.



OTC system

> Function

1 REMOTE FADER

TU-6453 REMOTE FADER is a 5-channel operation panel equipped with a motor fader. The display which displays the source name of a channel, fader name, and fader level, etc. and the illumination type pushbutton switch are carried.

(1) SET BUTTON

When the SET button is pressed while the TU-6454 SWITCH PANEL button is selected, the source defined for the SWITCH PANEL button is set as the input source for the channel. The set source name is displayed in OLED DISPLAY.

(2) AUD BUTTON, BUTTON 1, BUTTON 2

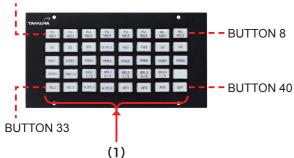
The use of this button is defined on the connection destination device. Button operation can be set with DIP SWITCH on the rear panel.

(3) OLED DISPLAY

Displays channel information and REMOTE FADER information.

[MATRIX SOURCE NAME]

The name of the input source to the channel is displayed.

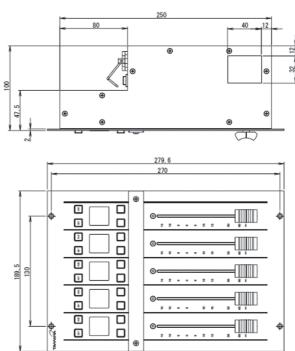

[FADER NAME] Displays the name of the fader channel.

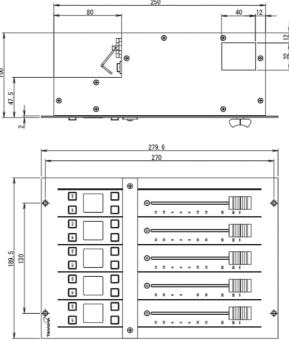
[FADER LEVEL] Displays the level value set by the fader.

2 SWITCH PANEL

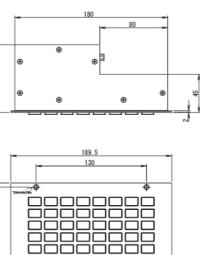
TU-6454 SWITCH PANEL is an operation panel equipped with 40 illuminated pushbutton switches.

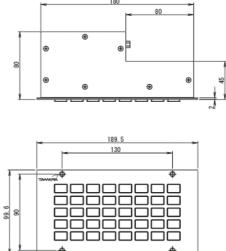
BUTTON 1




(1) BUTTON 1 to 40

lluminated pushbutton switch. The operation and use of this button are defined in the connection destination device.


Dimensions


REMOTE FADER Dimensions

SWITCH PANEL Dimensions

Communication System

INDEX

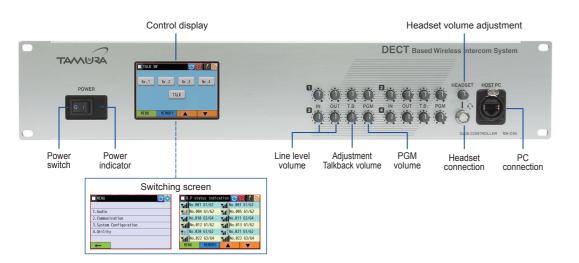
DECT Based Wireless Intercom System

P. 42~49

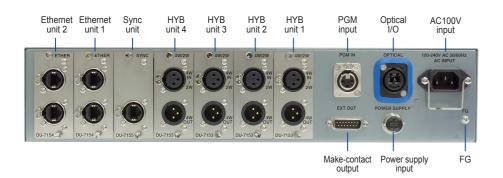
Analog Wireless Intercom System

P. 50~52

Wireless Monitoring System **P. 53~55**


DECT Based Wireless intercom system

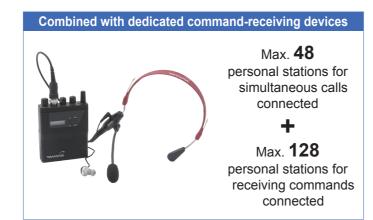
"DECT Based wireless intercom system" is Tamura Corporation's new digital wireless intercom system that inherits the intercom system technologies developed over time and complies with the new DECT format (ARIB STD- T101).


DECT Based wireless intercom system allows for improved convenience and large-scale system design, while maintaining the usability that enables intuitive operation.

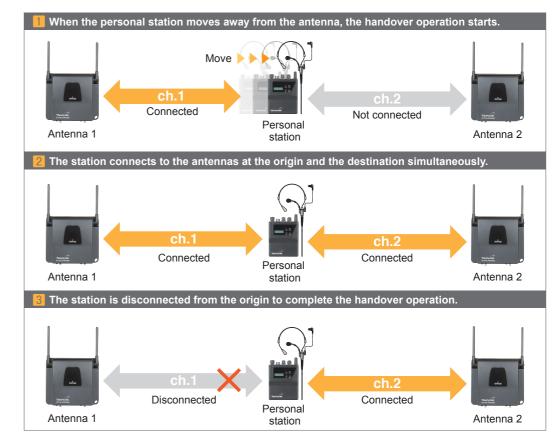
DECT Based wireless intercom system is a communication tool that achieves both innovation and familiarity.

• The main controller allows for both touch-panel control and knob-based adjustments that inherit Tamura's previous intercom series.

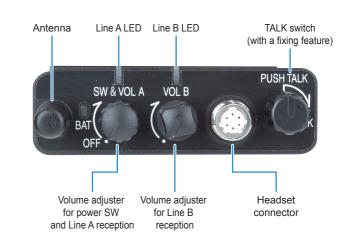
• Audio lines can be organized into 4 groups per system. The main controller is equipped with 4W/2W external connections, which make linking with wired intercom systems as easy as before.



- Ethernet cable is used for the communication line between the antenna and the main controller. In addition, an optical cable is used to support longer distances, which can be extended to a maximum of 2.5 km. When a PoEHUB is used, Ethernet cable also allows for a star network configuration.
- 10 personal stations can be connected per antenna, and up to 60 personal stations can be connected per system for simultaneous calls only.


When combined with dedicated command-receiving devices, a total of 176 personal stations (48 personal stations for simultaneous calls and 128 personal stations for receiving commands) can be connected so as to enable large-scale system configuration.

Simultaneous calls only



- Up to 16 antennas can be connected per main controller. When connecting 5 or more cell stations, connecting the main controller to the power supply can supply the power to all of the antennas.
- Seamless handover is adopted for the movement of personal stations between antennas. As the next antenna is detected beforehand, the seamless handover enables smooth transfer between antennas and seamless communication during station movements.

• Two audio groups can be assigned to the personal station to allow you to listen to the two groups simultaneously. Each volume adjuster is operated through knob control, which has been a popular feature of Tamura's previous intercom systems. It allows you to adjust the volume intuitively and respond instantly without the need to look at equipment when busy in the field.

• The system uses the 1.9-GHz band (DECT ARIB STD-T101), which does not overlap the Wi-Fi or other bands, reducing crosstalk. The system also reduces the crosstalk risk by channel transfer, when detecting any radio wave for an existing PHS or Tamura's previous digital wireless intercom systems.

DECT Based Wireless Intercom System

Main Controller MK-C96

- DECT Based Wireless Intercom System
- Controls the entire system, when connected to an active antenna.
- Equipped with a line-specific volume adjustment feature for external interfaces.

External interface(4W/2W unit)	4 lines
Ethernet unit	4 lines
(for connecting to an active antenna)	4 lines
PGM input	1 line
Optical interface	1 line
(for connecting to an active antenna)	i iiie
Make-contact	4-line dry make-contact (Dsub15PIN)
Structure	Rack-mount type EIA=2U
Power supply	AC100V~240V
Power consumption	Approx. 40W
Environment	-10°C~50°C (excl. the display panel LCD)
Weight	7kg
Dimensions	H88×W480×D350 (mm)

Active Antenna MK-A96

When 10 personal stations are connected for simultaneous calls only and dedicated No. of personal stations

control via the main controller.

Output voltage

Power supply

Power consumption

Structure

Environment Weight

• Communicates wirelessly with personal stations through

connected per antenna	command-receiving devices are included: 8 command-receiving devices + 128 personal		
	stations for simultaneous calls only		
Structure	Wall-mounted and microphone stand-		
Structure	mounted		
Power supply	Proprietary PoE or DC12V~24V		
Power consumption	Approx. 9W		
Environment	-10~50°C		
Weight	500g		
Dimensions	H135xW153xD45 (mm)		
Differisions	Excluding the dimensions of the protrusions		

• Used to supply power to active antennas. (Required when 5

or more active antennas are connected per main controller.)

-55V

AC100V~240V

Rack-mount type EIA=2U

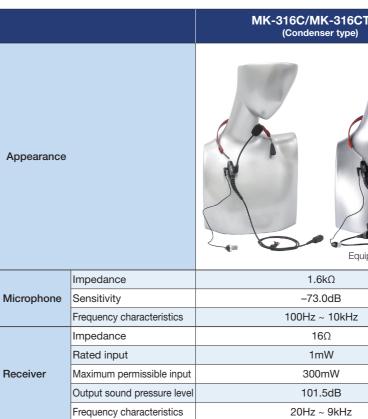
Approx. 160W

–10~50°C

6kg

Power Supply MK-P96

Personal Station MK-B96A


- H88×W480×D350 (mm) Dimensions
- Communicates wirelessly with active antennas.
- Supports the assignment of two audio groups and volume adjustment for each group.

Frequency characteristics	100Hz~7kHz	
Power supply	AA alkaline battery x 2, or AA nickel metal hydride secondary battery x 2	
Continuous use time	Approx. 8 hours (AA alkaline battery x 2)	
Continuous use time	Approx. 12 hours (AA nickel metal hydride secondary battery x 2)	
Environment	-10~50°C	
Weight	Approx. 218g (Contain an alkaline dry battery, Excluding leather cases)	
Dimensions	H100×W85×D27 (mm) Excluding the dimensions of the protrusions	

Charger MK-E96

- Charger for battery pack (PBA-4120) AC100 V
- Charging is possible for PBA-4120 itself or for equipment on which PBA-4120 is mounted.
- * The product consists of a battery charger alone.

Headset MK-316C/MK-316CTSW / HS-316C / HS-126D

* HS-316C is exclusive for personal station.

Main System Specifications

Item	
Max. no. of stations connected per system	60 pe 48 pe
Max. no. of personal stations connected per active antenna	10
Max. no. of active antennas connected per system	16
No. of call groups per main controller	4
No. of personal station groups for simultaneous listening	2 (inc
Frequency characteristics	100H
Radio system / Operating frequency	ARIB
Personal station multipath support	Polar
Handover method	Sean
Communication distance (line-of-sight)	Appr
Between the main controller and active antenna	Ether
Continuous use time for personal station	Appr
<u> </u>	

DECT Based Wireless Intercom System

Battery pack

YBA-4120

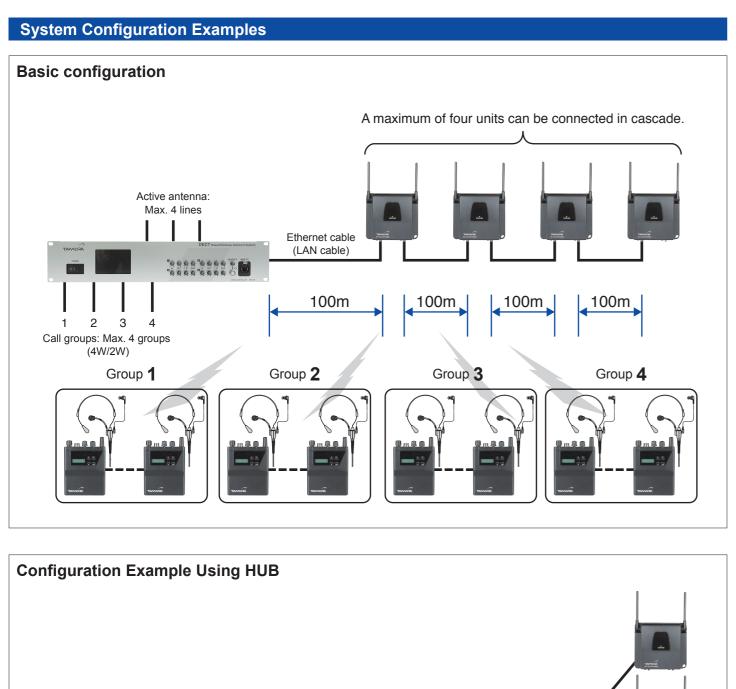
Build-to-order manufacturing Batteries used: Two AA alkaline batteries. * Batteries not included

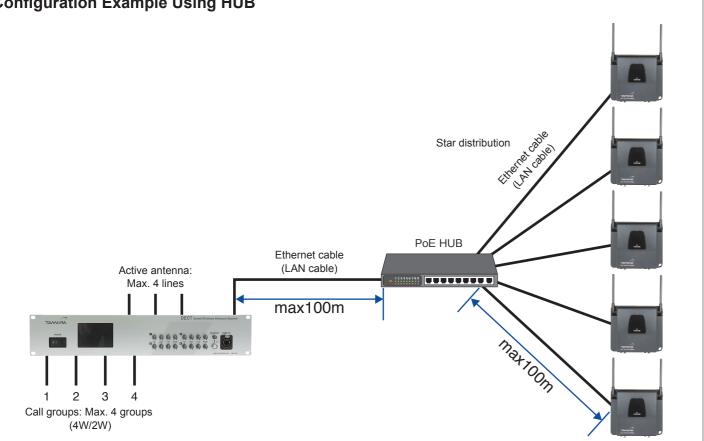
PBA-4120

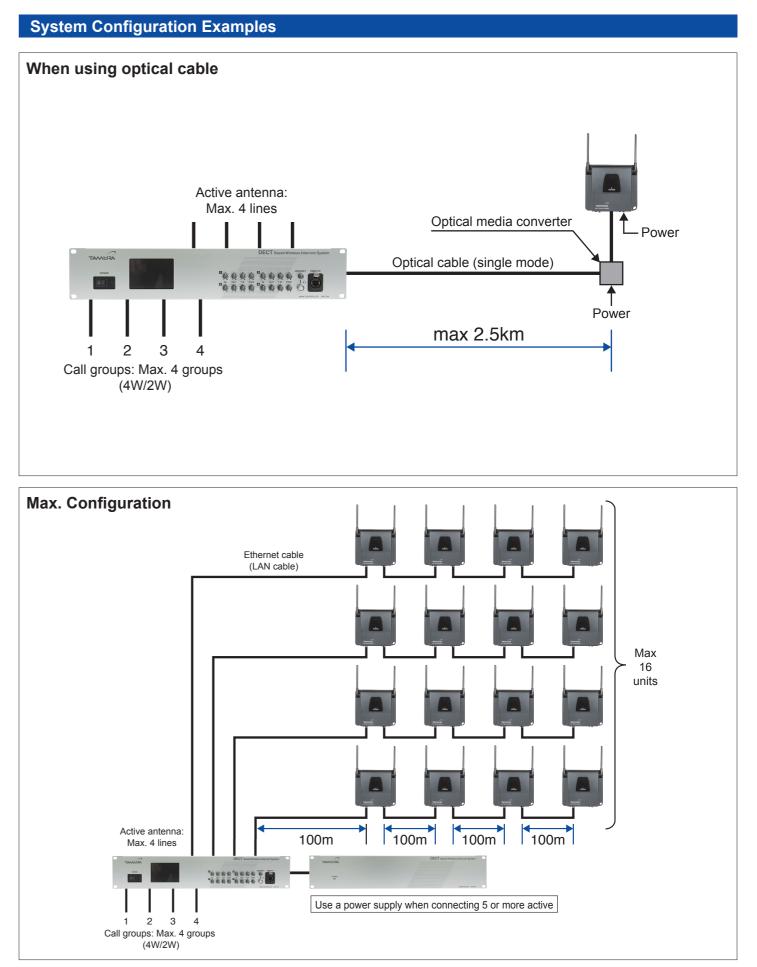
Batteries used: Nickel-metal hydride secondary batteries (2.4V)

TSW	HS-316C (Condenser type)	HS-126D (Dynamic type)
ipped with switch		
	1.6kΩ	200Ω
	-73.0dB	-86dB
	100Hz ~ 10kHz	100Hz ~ 7kHz
	300Ω	8Ω
	10mW	10mW
	300mW	500mW
	121dB	112dB
	100Hz ~ 3.5kHz	50Hz ~ 5kHz

Specification


personal stations for calls or personal stations for calls + 128 command-receiving devices


dependent volume adjustments enabled) Hz~7kHz B STD-T101 / 1.9GHz band arization diversity mless handover


rox. 300m

ernet cable (max. 100m) or optical cable (max. 2.5km)

rox. 8 hours (AA alkaline battery x 2)

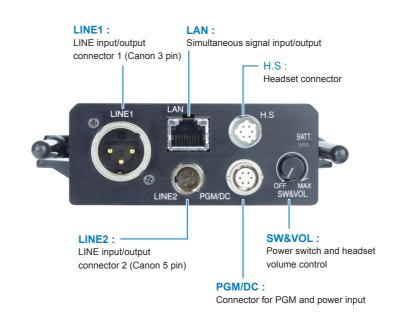
PHS radio stations and different types of radio stations for digital cordless telephones operate in the operating frequency band of this equipment. Due consideration has been given to this equipment so as to prevent radio wave interference with other radio stations that use the same frequency band. However, should the equipment cause any harmful radio wave interference to another radio station, immediately stop emitting radio waves, and then contact our inquiry service desk, which is provided on the back of this catalog, to discuss how to prevent such crosstalk.
All of the product screen images are inset composite images.

DECT Based Wireless Intercom System

DECT Based Wireless Intercom System

Portable system

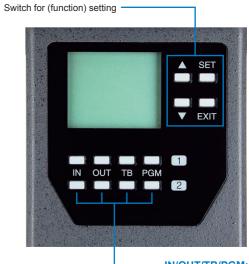
DECT type intercom system.


The functions of the main unit and other important units are integrated, and ten handsets can be connected, enabling establishment of two talk groups.

It is battery-powered and can be used outdoors where power supply is not possible.

Main specifications of the system

Item	Specifications	
Maximum number of connected handsets per a portable controller	10 units	
Number of talk groups per a portable controller	2	
Number of simultaneous listening groups for a handset	2 (independent volume adjustment is possible)	
Audio frequency characteristics	100Hz ~ 7kHz	
Radio system / frequency used	ARIB STD-T101 / 1.9 GHz band	
Multipath compatible handsets	Polarized wave diversity	
Communication distance (line of sight)	about 300 m	
Handset continuous use time	about 8 hours (two AA alkaline batteries) about 10 hours (two AA Ni-MH rechargeable batteries)	



Portable MK-H96

Battery box MK-D96

IN/OUT/TB/PGM: LINE level volume control switch

Item	Specifications
Number of handsets connected per a portable controller	10 units
External interface	2 systems (LINE input)
PGM input	1 system
Power supply	DC 8.0 V to 16.0 V
Environment	-10℃ to 50℃
Dimensions	H129×W89×D36(mm) (excluding dimensions of protrusions)
Weight	about 455 g

Battery box for eight AA alkaline batteries or Ni-MH secondary batteries

Item	Specifications	
Dimensions	H142×W89×D22(mm) (excluding dimensions of protrusions)	
Weight	about 160 g (excluding cables and batteries)	

Analog Wireless Intercom System

Antenna power 1mW or less, for surface movement business Wireless Intercom System

This intercom system is equipped with simple operability and basic performance as wireless equipment.

Using an antenna distribution method, the system can cover dead zones of radio waves with multiple antennas.

Specifications

Structure: Rack mounting type Power supply: AC 100 V Number of calls: 1:8 simultaneous calls Circuit configuration: Unit structure Number of antennas: 2 (transmission/reception shared) Channel setting: Station selection is easy with quartz control PLL synthesizer system Standards: Technical standard conformance has been certificated Environment: -10~+50°C Weight: Approx. 7.0 kg Dimensions: Width: 480mm; height: 88mm; depth: 250mm (not including protruding portions)

Specifications

Structure: Compact, light, and drip-proof Power supply: AA alkali cellx2 Continuous use time is 20 hours Call: Interactive simultaneous call Antenna: Helical antenna or whip antenna for transmission/reception Channel setting: Station selection is easy by quartz control PLL synthesize system Environment: 10~+50°C Weight: Approx. 220g (battery pack YBA-4120 included) Dimensions: Width: 85.4mm; height: 82mm; depth: 22.5mm (not including protruding portions)

Specifications

Structure: Compact, light, and drip-proof Power supply: AA alkali cellx2 Continuous use time is 23 hours Call: Interactive simultaneous call Antenna: Helical antenna or whip antenna for transmission/reception Channel setting: Station selection is easy by quartz control PLL synthesize system Standards: Technical standard conformance has been certificated Environment: -10~+50°C Weight: Approx. 210g (battery pack YBA-4120 included) Dimensions: Width: 85.4mm; height: 82mm; depth: 22.5mm

(not including protruding portions)

Battery pack

Production on order AA alkali cell×2

* Batteries are not included

Nickel-hydrogen battery (2.4 V)

Analog Wireless Intercom System

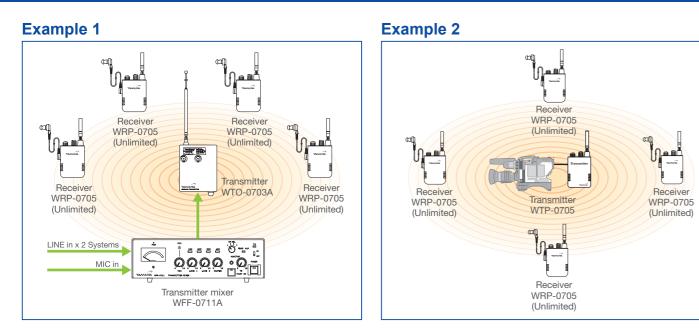
Electrical characteristics

		Base Station YFF-4530	Personal Station YMT-4120	Command receiving device YRT-4120
	Radio wave type	F3E/F2D (however, use i	-	
	Antenna type	Half wavelength dipole Alterna Helical antenna		or whip antenna
	Antenna impedance	75Ω	5	Ω0
Frequency	Frequency rand	Transmission: 454MHz band, Reception: 413MHz band	Transmission: 413MHz band, Reception: 454MHz band	Reception: 454MHz band
common	Number of frequencies	Downward (master uni	t transmission): 24 waves, upwa	ard (slave unit) 72 waves
	Separation		12.5 kHz (Interleave 6.25 kHz)	
	Oscillation system	Qu	artz control PLL synthesizer sys	stem
	Frequency stability		With in ±4ppm	
	Compander characteristic	Transmissio	on compressor 2: 1, Reception e	expander 1: 2
	Antenna power	With in 1mW (+20 -50%)	Total of antenna terminal	-
	Strength intensity of spurious radiation	2.5 μW	/ or less	-
	Modulation scheme	Direct frequer	ncy modulation	-
_	Voice frequency	3 kHz or less (300Hz~3kHz)		-
Transmission	Neighboring channel leak power	60 dB more than carrier wave power		-
	Occupied frequency Bandwidth	With in 8.5 kHz		-
	Frequency deviation	±2.5kHz less than when carrie	r frequency without modulation	-
	Reception system	Double superheterodyne		
Reception	Reception sensitivity		0 dB μV or less at SINAD 12 dB	3
песерион	Squelch sensitivity	Tone SQ:	0 dBµV or less, Noise SQ: 0 dB	βμV or less
	Cabinet radiation		4nW or less	
	Audio frequency characteristic		Within 300 Hz~3kHz	
		0 dBm, balanced 600Ω (4W) -20 dBu, unbalanced 220Ω (2W)	-	
	Microphone input	-60 dBm, balanced 600Ω	–60 dBm, unbalanced 600Ω	-
Common	Speaker output	Inside; 1W (8Ω), 15 mW or more (at 8Ω) Outside: 1W (8Ω) 15 mW or more (at 8Ω)		more (at 8Ω)
	Program input	-20~+10 dBm unbalanced		-
	Power supply use range	AC100V ± 15%: 1.5A	At 3.0 V: 150 mA or less	At 3.0 V: 120 mA or less
			Warning lamp flashes at 2.3 V or less	
	Use environment	Temperature: -10~+50°C, Humidity: with in 35~90%		

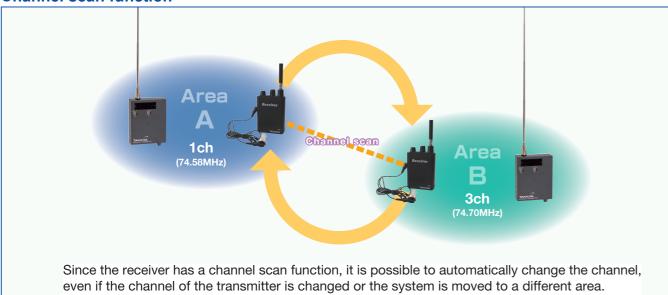
Frequency within license

[BS]

Downward transmission frequency			
Channel No.	Frequency Channel (MHz) No.		Frequency (MHz)
1	454.05000	2	454.05625
3	454.06250	4	454.06875
5	454.07500	6	454.08123
7	454.08750	8	454.09375
9	454.10000	10	454.10625
11	454.11250	12	454.11875
13	454.12500	14	454.13125
15	454.13750	16	454.14375
17	454.15000	18	454.15625
19	454.16250	20	454.16875
21	454.17500	22	454.18125
23	454.18750	24	454.19375


[PS] Upward transmission frequency

Chann No. 1


Frequency (MHz)	Channel No.	Frequency (MHz)	Chann No.	el Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Fre (
413.70000	2	413.70625	25	413.85000	26	413.85625	49	414.00000	50	414
413.71250	4	413.71875	27	413.86250	28	413.86875	51	414.01250	52	414
413.72500	6	413.73125	29	413.87500	30	413.88125	53	414.02500	54	414
413.73750	8	413.74375	31	413.88750	32	413.89375	55	414.03750	56	414
413.75000	10	413.75625	33	413.90000	34	413.90625	57	414.05000	58	414
413.76250	12	413.76875	35	413.91250	36	413.91875	59	414.06250	60	414
413.77500	14	413.78125	37	413.92500	38	413.93125	61	414.07500	62	414
413.78750	16	413.79375	39	413.93750	40	413.94375	63	414.08750	64	414
413.80000	18	413.80625	41	413.95000	42	413.95625	65	414.10000	66	414
413.81250	20	413.81875	43	413.96250	44	413.96875	67	414.11250	68	414
413.82500	22	413.83125	45	413.97500	46	413.98125	69	414.12500	70	414
413.83750	24	413.84375	47	413.98750	48	413.99375	71	414.13750	72	414

- transmitter mixer and the transmitter.
- designed for a long transmission distance (WTO-0703A)
- (74.58MHz / 74.64 / 74.70 / 74.7) for a channel.
- with a frequency response of 100 Hz to 8 kHz.

Channel scan function

54

WTP-0705

Transmitter	
ACOMT	

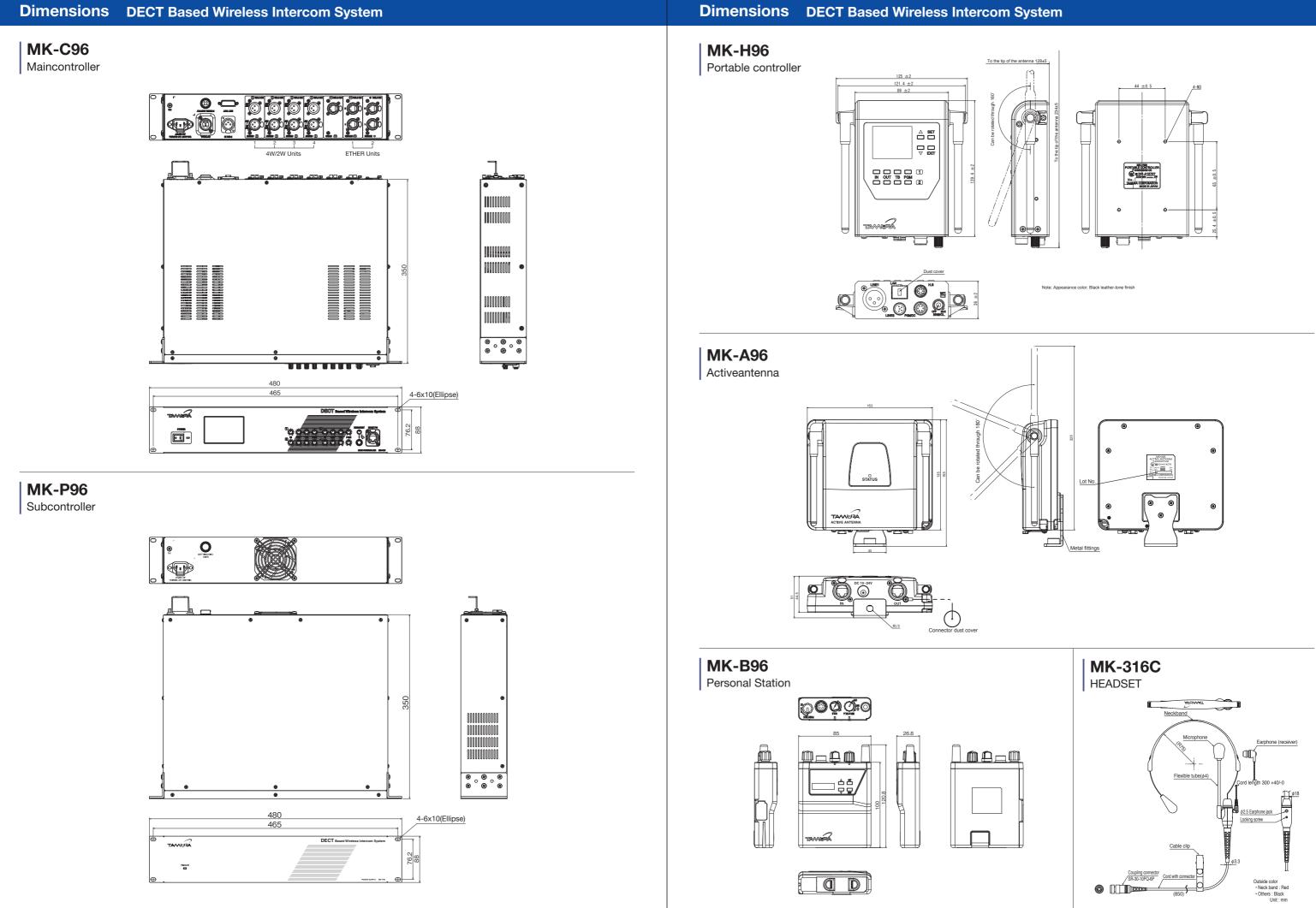

Rf Power Output	10mW
he Number of Channels	4 channels PLL type
nput	–60 / –20 / +4 dBm (600Ω)
Structure	Portable size
Power Source	DC1.5V (AA alkaline)
vailable Time	More than 10 hours (1 AA alkaline)
Invironment	−10°C ~ +50°C
Veight	100g (Including battery)
Dimensions	Width: 60mm; Height: 80mm; Depth:19mm (not including protruding portions)

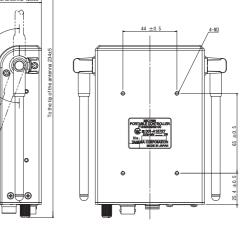
Receiver

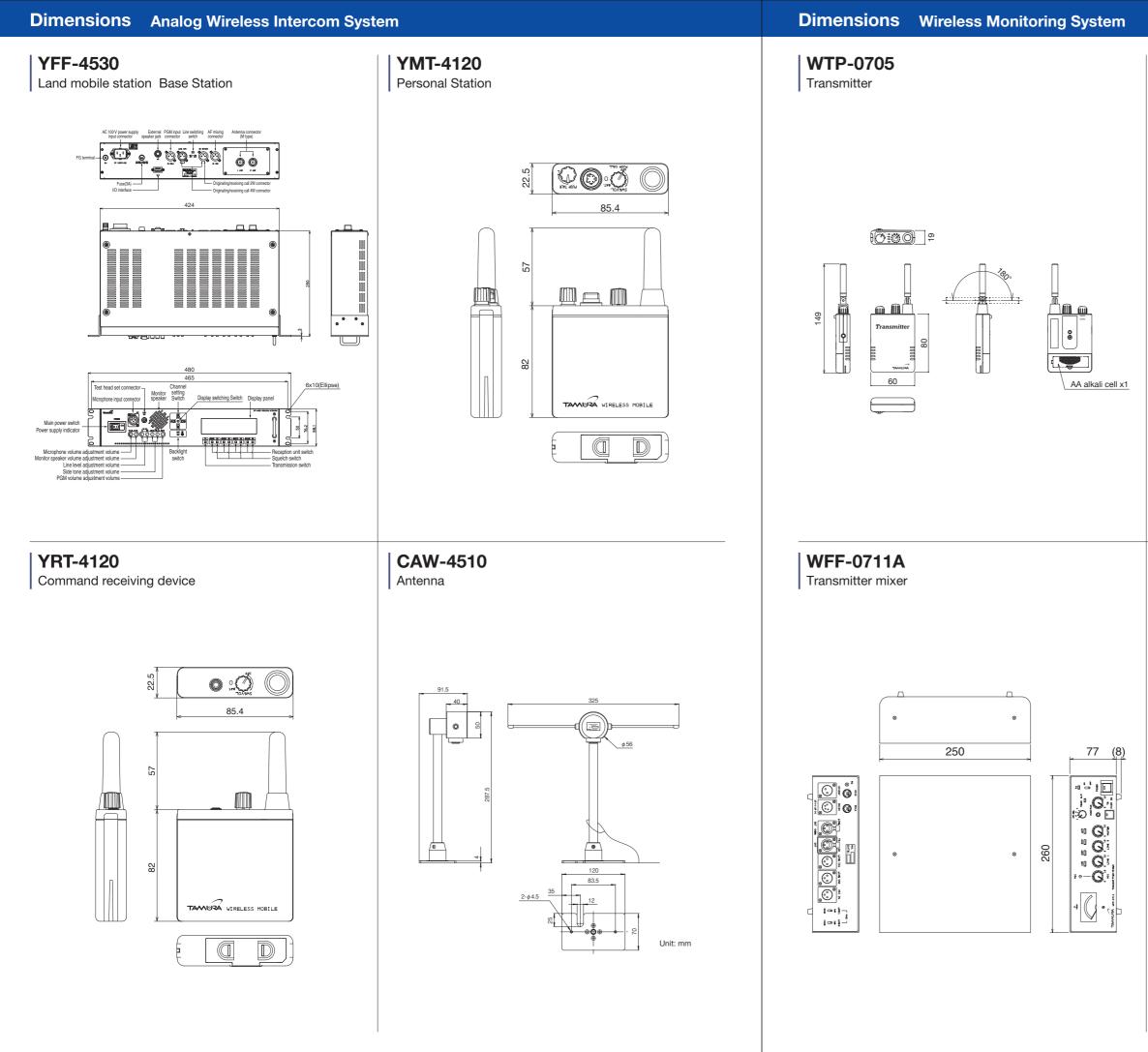
Receiver

Wireless Monitoring System

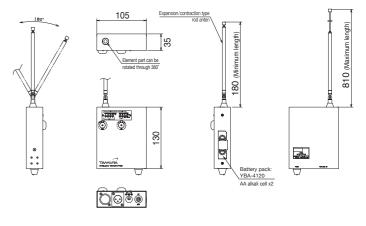
WTO-0703A

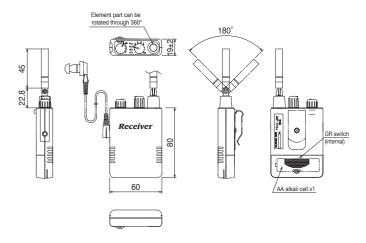

Rf power output	10mW
The Number of Channels	4Channels PLL Type
Input	–60 / –20 / +4 dBm (600Ω)
Structure	Wall-mounting and microphone stand mounting system
Power Source	DC10V(supplied by WFF-0711A) DC7 ~ 15V(External Power) More than 18 hours(AA alkaline×2)
Environment	-10°C ~ +50°C
Weight	680g (Including batteries)
Dimensions	Width: 105mm; Height: 130mm; Depth: 35mm (not including protruding portions)


WFF-0711A


Input	LINE ×2 MIC ×1(600Ω)	
Output	LINE ×1 (Transformer Balanced)	
Channel Change	Remote Control, 4 Channels	
Frequency Characteristic	100Hz ~ 10kHz	
Environment	−10°C ~ +50°C	
Power Source	AC100V / DC12V	
Wight	2.5kg	
Dimensions	Width: 260mm; Height: 77mm; Depth:250mm (not including protruding portions)	

WRP-0705


Receive Sensitivity	Less than 2µV (SINAD12)	
Type of Reception	Space Diversity	
The Number of Channels	4 Channels PLL type	
Structure	Portable size	
Power Source	DC1.5V (AA alkaline)	
Available Time	More than 18 Hours	
Environment	−10°C ~ +50°C	
Wight	100g (Including Battery)	
Dimensions	Width: 60mm; Height: 80mm; Depth: 19mm (not including protruding portions)	



WTO-0703A Transmitter

WRP-0705 Receiver

59

1-19-43 Higashi-Oizumi, Nerima-ku, Tokyo, 178-8511, Japan Sales Management Department, Information Equipment Division TEL: 050-3664-0562 FAX: 03-3978-2005

4F Second Esaka-Sansho Building 3-27-27 Tarumizu-cho, Suita-shi, Osaka, 564-0062, Japan **West Japan Sales Office, Information Equipment Division** TEL: 050-3664-0562 FAX: 06-4861-7728

Please note that specifications and appearance are subject to change without notice for improvement.

The information is current as of December 2022.