

■ Absolute Maximum Ratings

ltem	Symbol	Min	Max	Unit	Conditions · Note
Input voltage for DC/DC converter	V_{IN}	-0.3	28	Vdc	Between Vin(+) to Vin(-)
Minimum operating input voltage for DC/DC converter	V_{INMIN}	13	-	Vdc	
Input-side signal voltage	V_{SG}	-0.3	5.2	V	INA, INB, XRST, RDY, FLT
Input-side signal maximum current	I_{SG}	-	5	mA	RDY, FLT
DESAT pin input voltage	V_{DESAT}	-0.3	V _{OUTH} +0.3	V	
CLAMP pin input voltage	V_{CLAMP}	V _{OUTL} -0.3	V _{OUTH} +0.3	V	
OUT pin output current(peak)	I _{OUTPEAK}	-	18	Α	Guaranteed by design
Output power for DC/DC converter	P _{out}	-	3	W	By one circuit
Switching frequency	F_{SW}	-	200	kHz	
Operating temperature range	T _{OP}	-30	85	°C	See the derating curve
Operating humidity	RH _{OP}	20	95	%RH	No condensation
Storage temperature range	$T_{\mathtt{STG}}$	-30	100	°C	
Storage humidity	RH _{STG}	5	95	%RH	No condensation

■Recommended Operating Conditions

ltem	Symbol	Min	Max	Unit	Conditions · Note
Input voltage range for DC/DC converter	V_{IN}	13.5	26.4	Vdc	Rated Input Voltage:24V
Driver circuit number	N	-	2	-	
Logic high level input voltage	$V_{\rm SGH}$	2	5	٧	INA, INB ,XRST
Logic low level input voltage	$V_{\rm SGL}$	0	0.8	٧	INA, INB ,XRST
Source current of control signal	I_{SG}	20	-	mA	INA, INB, XRST, V _{SG} =5V
Maximum gate drive capability(200kHz)	Q_{MAX}	-	650	nC	T _{OP} =55°C Reference value
Maximum gate drive capability(50kHz)	Q_{MAX}	-	2600	nC	T _{OP} =55°C Reference value
Minimum input pulse width	t _{INMSK}	-	60	ns	

■Electrical Specification (Ta=25°C)

DC/DC converter block

ltem	Symbol	Min	Тур	Max	Unit	Conditions · Note	
Start-up voltage	V _{START}	-	11.5	12.5	V		
Efficiency	Effi	69	74	-	%	Rated Input Voltage, I _{OUTAVE} (CH1,2):100mA	
Standby power	P _{STBY}	-	0.7	1	W	Rated Input Voltage, No load	
Output voltage(High)	V ₁₊ ,V ₂₊	14.5	15.5	16.5	V	$I_{OUTAVE}(CH1) = I_{OUTAVE}(CH2) = 10-140mA$	
Output Voltage(Fight)	v ₁₊ , v ₂₊	14.5	15.5	17.0	V	$I_{OUTAVE}(CH1) = I_{OUTAVE}(CH2) = 0-10mA$	
Output voltage(Low)	V_{1-}, V_{2-}	-7	-6	-5	V	$I_{OUTAVE}(CH1) = I_{OUTAVE}(CH2) = 0-140mA$	
Output voltage(5VDC)	V_{5VDC}	4.8	5.0	5.2	V		
Output Voltage(High)(Load imbalance)	V_{1+}, V_{2+}	-	-	22	V	I _{OUTAVE} (CH1):100mA,I _{OUTAVE} (CH2):0mA	
Output Voltage(Low)(Load imbalance)	V ₁₋ ,V ₂₋	-11	-	-	V	or I _{OUTAVE} (CH1):0mA,I _{OUTAVE} (CH2):100mA	

Gate drive block

ltem	Symbol	Min	Тур	Max	Unit	Conditions · Note		
Logic								
Logic high level input voltage	V_{SGH}	2	-	V_{5VDC}	٧	INA, INB ,XRST		
Logic low level input voltage	V_{SGL}	0	-	0.8	٧	INA, INB ,XRST		
Logic pull-down resistance	R _{SGD}	-	270	_	Ω	INA, INB ,XRST		
Logic pull-up resistance	R _{sgu}	-	5100	_	Ω	RDY, FLT		
Logic input mask time	t _{INMSK}	-	-	60	ns	INA, INB		
Minimum XRST pulse width	t _{XRSTMIN}	800	-	_	ns			

■Electrical Specification - Continued (Ta=25°C)

Gate drive block - continued

	Item	Symbol	Min	Тур	Max	Unit	Conditions · Note	
Output								
Output pin vol	tage(High)	$V_{\rm OUTH}$	-	V _{DCDCOH} -0.5	-	٧	No load	
Output pin vol	taga(Law)	V _{OUTL}	-	V _{DCDCOL} +0.5	-	V	No load, Miller clamp pin no used	
Output pin von	lage(LOW)	V OUTL	-	V _{DCDCOL} +0.1	-	٧	No load, Miller clamp pin used	
OUT ON resist	ance(Source)	Ronh	-	-	50	mΩ	Guaranteed by design	
OUT ON resist	ance(Sink)	R _{ONL}	-	-	50	mΩ	Guaranteed by design	
CLAMP ON res	sistance	R _{ONPRO}	0.2	0.5	0.9	Ω	I _{CLAMP} =40mA	
Low level CLA	MP current	I _{CLAMPL}	3	4.5	-	Α	Guaranteed by design	
CLAMP ON thr	reshold voltage	V_{CLPON}	V _{OUTL} +1.8	V _{OUTL} +2	V _{OUTL} +2.2	٧	Guaranteed by design	
Delay time	Turn ON time	t _{PON}	55	80	105	ns		
Delay tillle	Turn OFF time	t _{POFF}	55	80	105	ns		

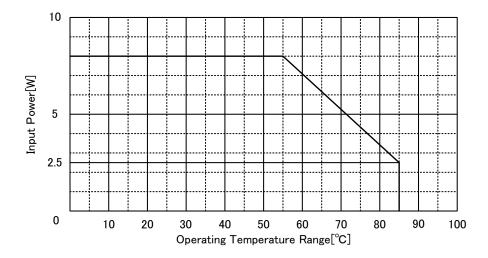
■Protection

DC/DC converter block

ltem	Symbol	Min	Тур	Max	Unit	Conditions · Note	
Overload protection	-	6	-	-	W	Auto recovery	
Overheat protection	-	120	-	150	°C		

Gate drive block

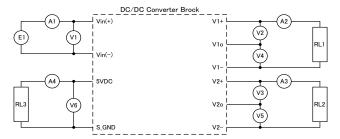
Item	Symbol	Min	Тур	Max	Unit	Conditions · Note
5VDC UVLO OFF voltage	$V_{\rm UVLO5VH}$	3.35	3.50	3.65	V	Guaranteed by design
5VDC UVLO ON voltage	$V_{\rm UVLO5VL}$	3.25	3.40	3.55	V	Guaranteed by design
5VDC UVLO UVLO mask time	T _{UVLO5VMSK}	1.0	2.5	5.0	us	Guaranteed by design
OUT(H) UVLO OFF voltage	$V_{\rm UVLOOHH}$	11.3	12.3	13.3	V	Guaranteed by design
OUT(H) UVLO ON voltage	$V_{\rm UVLOOHL}$	10.3	11.3	12.3	V	Guaranteed by design
OUT(H) UVLO mask time	T _{UVLOOHMSK}	1.0	2.0	3.0	us	Guaranteed by design
DESAT source current	I _{DESAT}	450	500	550	uA	
DESAT threshold voltage	V_{DESAT}	8.5	9	9.5	V	
DESAT filter time	t _{DESATFIL}	0.16	0.25	0.34	us	Guaranteed by design
DESAT delay time(OUT)	t _{DESATOUT}	0.31	0.38	0.45	us	Guaranteed by design
DESAT delay time(FLT)	t _{DESATFLT}	0.34	0.42	0.5	us	Guaranteed by design
DESAT low voltage	V _{DESATL}	-	0.1	0.22	V	I _{DESAT} =1mA
DESAT leading edge blanking	t _{DESTLEB}	0.28	0.4	0.52	us	Guaranteed by design
RDY output low voltage	V_{RDYL}	_	0.08	0.15	V	I _{RDY} =5mA
FLT output low voltage	V_{FLTL}	-	0.08	0.15	V	I _{FLT} =5mA



■Insulation

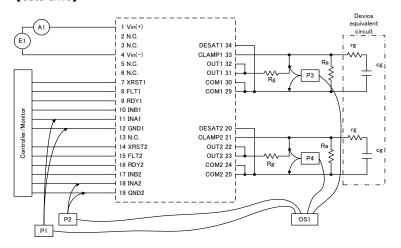
ltem	Specification	Conditions · Note
Between Input-Output		•
Dielectric withstand voltage	AC2500V	1min, Cutoff 2mA
Test dielectric withstand voltage	AC2500V	1sec, Cutoff 2mA
Insulation resistance	100M Ω or more	DC500V
Minimum clearance distances	6mm	
Minimum creepage distances	6mm	
Between Ch1-Ch2		•
Dielectric withstand voltage	AC2500V	1min, Cutoff 2mA
Test dielectric withstand voltage	AC2500V	1sec, Cutoff 2mA
Insulation resistance	100M Ω or more	DC500V
Minimum clearance distances	6mm	
Minimum creepage distances	6mm	

■Ambient Temperature Derating Curve


Reduce the input power according to the following temperature derating table.

■Measure Circuit

[DC/DC converter]



Ε1 : DC power supply : Ammeter Class 0.5 A1 - 4

RL1-3 : Electronic load

V1-6 : Voltmeter Class 0.5

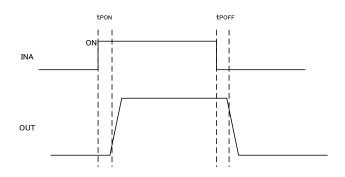
[Gate drive]

Ε1 : DC power supply

Α1 : Ammeter Class 0.5

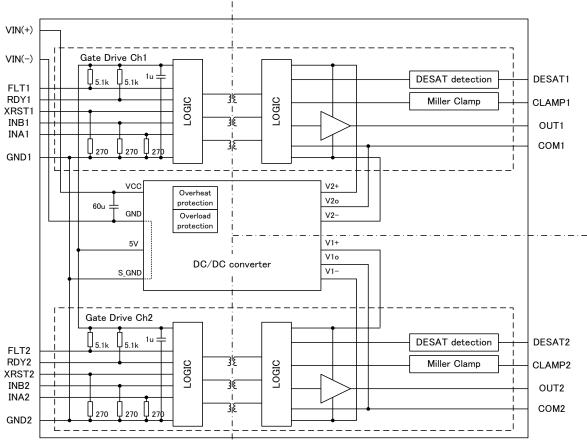
OS1 : Oscilloscope

P1-4 : Probe


: 4Ω Rg : $47k\Omega$ Ra

: 1Ω

rg


: 100nF cg

[Rising waveform/Falling waveform]

■Block Diagram

■Pin Connection

See the next section for details of pin functions

Input side

Pin No.	Name	CH	Explanation of pins
1	Vin(+)	Common	Power supply pin for DC/DC converter(+)
2	N.C.	-	Unused pin *Don't connect with other circuits.
3	N.C.	-	Unused pin *Don't connect with other circuits.
4	Vin(-)	Common	Power supply pin for DC/DC converter(-)
5	N.C.	-	Unused pin *Don't connect with other circuits.
6	N.C.	ı	Unused pin *Don't connect with other circuits.
7	XRST1	1	Reset input pin
8	FLT1	1	Fault output pin
9	RDY1	1	Ready output pin
10	INB1	1	Opposite driver's control input pin
11	INA1	1	Control input pin
12	GND1	1	Ground pin for control circuit
13	N.C.	ı	Unused pin *Don't connect with other circuits.
14	XRST2	2	Reset input pin
15	FLT2	2	Fault output pin
16	RDY2	2	Ready output pin
17	INB2	2	Opposite driver's control input pin
18	INA2	2	Control input pin
19	GND2	2	Ground pin for control circuit

Output side

Pin No.	Name	CH	Explanation of pins
20	DESAT2	2	Desaturation protection pin
21	CLAMP2	2	Miller clamp pin
22	OUT2	2	Gate drive pin
23	OUT2	2	Gate drive pin
24	COM2	2	Common pin
25	COM2	2	Common pin
26	NONE	ı	None
27	NONE	ı	None
28	NONE	-	None
29	COM1	1	Common pin
30	COM1	1	Common pin
31	OUT1	1	Gate drive pin
32	OUT1	1	Gate drive pin
33	CLAMP1	1	Miller clamp pin
34	DESAT1	1	Desaturation protection pin

■Terminal Function

- \cdot Vin(+), Vin(-) (Power supply pin for DC/DC converter)
- ·GND(Ground pin for drive circuit)
- ·INA, INB, XRST(Control input pin, XRST input pin)

The INA, INB and XRST pin is a pin used to determine output logic.

And XRST is in charge of setting back the FLT pin.

XRST	INB	INA	OUT
L	Χ	Χ	L
Н	Н	Χ	L
Н	L	L	L
Н	L	Н	Н

FLT(Fault output pin)

The FLT pin is an open drain pin used to output a fault signal when desaturation function is activated, and will be cleared at the rising edge of FLT.

Status	FLT
While in normal operation	Н
When desaturation function is activated	L

·RDY(Ready output pin)

The RDY pin shows the status of three internal protection features which are 5VDC UVLO, OUT(H) UVLO, and output state feedback (OSFB). The term 'output state feedback' shows whether output internal logic is high or low corresponds to input logic or not.

Status					
While in normal operation	Н				
5VDC UVLO or OUT(H) UVLO or Output internal logic feedback	L				

·OUT(Output pin)

The OUT pin is a pin used to drive the gate of a power device.

·CLAMP(Miller clamp pin)

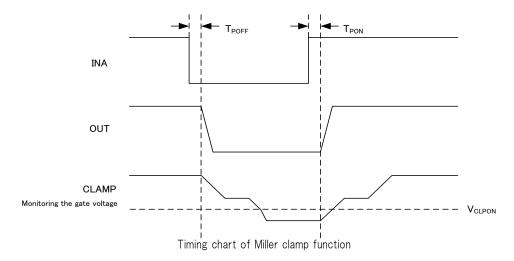
The CLAMP pin is a pin for preventing increase in gate voltage due to the miller current of the power device connected to OUT pin. When not in use, connect a $10k\Omega$ resistor between CLAMP-COM.

$\cdot {\tt DESAT}({\tt Desaturation\ protection\ pin})$

The DESAT pin is a pin used to detect desaturation of IGBT/MOSFET. When the DESAT pin voltage exceeds V_{DESAT} , the DESAT function will be activated. This may cause the IC to malfunction in an open state. To avoid such trouble, short-circuit the DESAT pin to the COM pin if the desaturation protection is not used. In order to prevent the wrong detection due to noise, the noise mask time $t_{DESATFIL}$ is set.

·COM(Common pin)

COM pin is a pin to be connected to the emitter / source of the power device.



■Description Of Protection

1. Gate voltage rise prevention function

If OUT=L and the CLAMP pin voltage < VCLPON, the internal MOSFET of the CLAMP pin turns on.

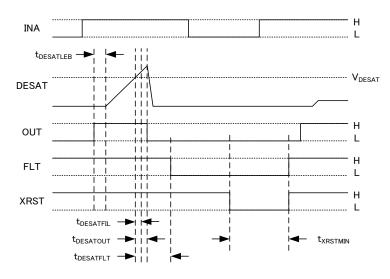
OUT	CLAMP	Internal MOSFET of the CLAMP pin
L	Less than V_{CLPON}	ON
L	Not less than V_{CLPON}	OFF
Н	Χ	OFF

2. Undervoltage Lockout (UVLO) function

The control circuit incorporates the undervoltage lockout (UVLO) function both on the 5VDC and the OUT(H) sides.

When the 5VDC or the OUT(H) voltage drops to the UVLO ON voltage, the OUT pin and the RDY pin both will output the "L"signal.

When the 5VDC or the OUT(H) voltage rises to the UVLO OFF voltage, these pins will be reset. To prevent malfunctions due to noises, mask time $t_{\text{UVLO5VMSK}}$ and $t_{\text{UVLO6VMSK}}$ are set on both input and output sides.



3. Desaturation protection function(DESAT), Fault signal output function

When the DESAT pin voltage exceeds $V_{\mbox{\scriptsize DESAT}}$, the DESAT function will be activated.

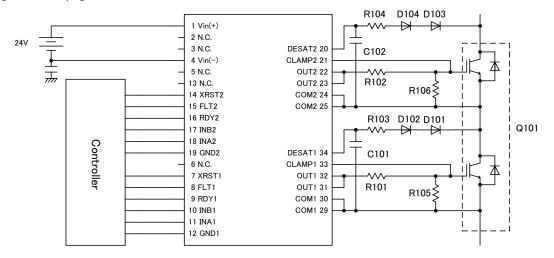
When the DESAT function is activated, the OUT pin voltage will be set to the "L" level, and then the FLT pin voltage to the "L" level.

When the rising edge is put in the XRST pin, the DESAT function will be released.

DESAT Operation Timing Chart

■I/O Condition Table

No.	Status	Input							Output			
NO.	Status	$V_{\rm 5VDC}$	$V_{\rm OUTH}$	DESAT	XRST	INB	INA	CLAMP	OUT	CLAMP	FLT	RDY
1	V _{5VDC} UVLO	UVLO	Χ	Χ	Χ	Χ	Χ	Н	L	Hi-Z	Н	L
2	V SVDC OVLO	UVLO	Χ	Χ	Χ	Χ	Χ	L	L	L	Н	L
3		0	UVLO	L	Χ	Χ	Χ	Н	L	Hi-Z	Н	L
4	V _{OUTH} UVLO	0	UVLO	L	Χ	Χ	Χ	L	L	L	Н	L
5	VOUTH OVEO	0	UVLO	Н	Χ	Χ	Χ	Н	L	Hi-Z	L	L
6		0	UVLO	Н	Χ	Χ	Χ	L	L	L	L	L
7	DESAT	0	0	Н	Χ	Χ	Χ	Н	L	Hi-Z	L	H(*)
8		0	0	Н	Χ	Χ	Χ	L	L	L	L	H(*)
9	XRST	0	0	L	L	Χ	Χ	Н	L	Hi-Z	Н	H(*)
10	AROT	0	0	L	L	Χ	Χ	L	L	L	Н	H(*)
11		0	0	L	Н	Н	Χ	Н	L	Hi-Z	Н	H(*)
12	Normal operation	0	0	L	Н	Н	Χ	L	L	L	Н	H(*)
13		0	0	L	Н	L	L	Н	L	Hi-Z	Н	H(*)
14		0	0	L	Н	L	L	L	L	L	Н	H(*)
15		0	0	L	Н	L	Н	Χ	Н	Hi-Z	Н	H(*)


O:5VDC or OUT(H) UVLO > UVLO, X:Don't care

(*) If the internal logic of high voltage side doesn't become the expected value, the RDY pin will become "L". And this stage is cleared automatically if the internal logic of high voltage side becomes the expected value.

■ Application

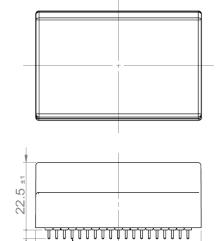
[Circuit example]

[Configuration example]

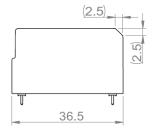
Symbol	Description	Part No.	Manufacturer		
Q101	IGBT				
D101-104	Diode	CMF05	TOSHIBA		
C101,102	Capacitor	100pF 25V			
R101,102	Resistor	**Ω 6W			
R103,104	Resistor	1kΩ			
R105,106	Resistor	47k Ω			

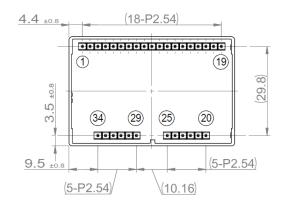
■Reliability

ltem	Test condition and acceptance criterion					
Exposure in high temperature	100°C, 240H, Ж					
Exposure in low temperature	-30°C, 240H, ※					
Exposure in high temperature and high humidity	60℃, 90~95%RH, 240H, ※					
Thermal shock	-30°C/30min to 100°C/30min, 500cycles, ※					
Low temperature operation	Input voltage:DC24V, Output current:Rated Load					
	–30°C, 240H,					
High temperature operation	Input voltage:DC24V, Output current:Rated Load					
	85°C, 240H, ※					
high temperature	Input voltage:DC24V, Output current:Rated Load					
and high humidity operation	60°C, 90∼95%RH, 240H, ※					
Vibration	Vibration amplitude:1.5mm(peak to peak), Vibration Frequency:10 to 55Hz, Sweeping:1min.					
	In each X, Y and Z direction: once, 120min. 💥					
Impact	Acceleration:490m/s ² (50G), Operating time:11ms					
	In each $\pm X$, Y and Z direction:3 times, $\%$					
Solderablity	Dip the sample in a solution of Rosin:Methanol=25:75.					
	After that, dip into the solder bath where Sn-3Ag-0.5Cu solder is melted					
	at $250\pm5^{\circ}\mathrm{C}$ for 3.0 ± 0.5 seconds to soak up to 3 mm from the tip.					
	Remove the sample after this.					
	Solder shall uniformly cover more than 75% of pin circumference direction					
	and there should not be any unusual appearance.					
Resistance to soldering heat	Dip the sample in a solution of Rosin:Methanol=25:75.					
	After that, dip into the solder bath where Sn-3Ag-0.5Cu solder is melted					
	at 260±5°C for 10.0±0.5 seconds to soak up to 3 mm from the tip.					
	Remove the sample after this.					
	Leave it at normal temperature for 1-2 hours.					
	There should not be any unusual appearance.					


^{*}After each test, leave the sample at room temperature and humidity for 24 hours.

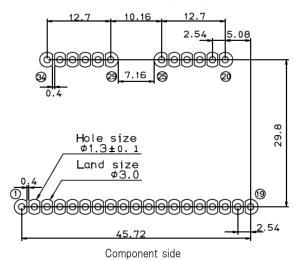
There should not be any abnormality in electrical performance and external appearance.


■Outline Dimensional Drawing


±0.3

□0.64 Tin plated brass

54.5


Note :1.The dimensional tolerance without directions is \pm 0.5mm.

Unit:mm

■Product Weight

75g(TYP)

■Recommended Hole Diameter And Land Size

XThe round pulling out figure is a pin numbering.

Unit:mm

■Recommended Soldering Condition

·Flow soldering condition : 255±3℃ Less than 5sec

Temperature of preheating $110^{\circ}\text{C} \sim 130^{\circ}\text{C}$ End temperature of preheating $110^{\circ}\text{C} \pm 10^{\circ}\text{C}$

·Soldering condition of hand work : 350°C(MAX) Less than 4sec

■Storage Conditions

ltem	Min	Max	Unit	Conditions · Note
Storage temperature	-25	60	°C	A packing state

If you want to use past the long period there is a concern that the solder non-wetting by terminal oxidation to occur.

■Usage Cautions

• Always mount fuse on the plus side of input for ensuring safety because the fuse is not built-in the product.
Please select the fuse considering conditions such as steady current, inrush current, and ambient temperature.
When using a fuse having large rated current or high capacity input electrolytic condenser, by combining another converter and input line and input electrolytic condenser, fuse may not blow off in the case of abnormality.
Do not combine high voltage line and fuse.

- This product is designed to be best when it drives two devices to have the same gate capacitance simultaneously.
 Because it leads to the "output unstable" and "output accuracy deterioration".
 If you want to use to drive only one of the devices, because of the output voltage accuracy deterioration prevention,
 please configure the dummy gate circuit (resistor and capacitor) to consume the equivalent of the power and the drive side.
- This product is to transmit the signal of the insulating part by the magnetic coupling.
 Therefore, if you use this product in a strong magnetic field in, there is a possibility of malfunction.
 In that case, connect the capacitor between the GND terminal of this product and a metal enclosure.
- Make sure the rise/fall time of the input signal is 500ns or less.
- This product has DESAT protection for arm short circuit and load short circuit protection.

However, even if this protection works, the device may be damaged if abnormally high current occurs due to devices characteristics variations or the load short-circuit mode during parallel operation.

To ensure safety, be sure to check the short-circuit current at the unit in which this product is integrated, and evaluate whether it can protect under the condition that there is no damage to the device.

lacklacklack If the dV/dt of the device on which this product is mounted is high, this product may malfunction.

Adequately evaluate this product by mounting it on the set that you will actually use.

Use this product with a device dV/dt of approx. 12 kV/us or below as a guide.

Therefore, please use from taking enough tests.

■ Important Notice

- This information and product are subject to change without prior notice for the purpose of improvements, etc. Ensure that you are in possession of the most up-to-date information when using this product.
- The operation examples and circuit examples shown in this document are for reference purposes only, and TAMURA Corporation disclaims
 all responsibility for any violations of industrial property rights, intellectual property rights and any other rights owned by TAMURA Corporation
 or third parties that these may entail.
- The circuit examples and part constants listed in this document are provided as reference for the verification of characteristics. You are to perform design, verification, and judgment at your own responsibility, taking into account the various conditions.
- TAMURA has evaluated the efficiency and performance of this product in a usage environment determined by us.
 Depending on your usage environment or usage method, there is the possibility that this product will not perform sufficiently as shown in the specifications, or may malfunction.
 - When applying this product to your devices or systems, please ensure that you conduct evaluations of their state when integrated with this product. You are responsible for judging its applicability.
 - TAMURA bears no responsibility whatsoever for any problems with your devices, systems or this product which are caused by your usage environment or usage method.
- TAMURA Corporation constantly strives to improve quality and reliability, but malfunction or failures are bound to occur with some
 probability in power products. To ensure that failures do not cause accidents resulting in injury or death, fire accidents, social damage,
 and so on, you are to thoroughly verify the safety of their designs in devices and/or systems, at your own responsibility.
- This product is intended for use in consumer electronics (electric home appliances, business equipment, Information equipment, communication terminal equipment, measuring devices, and so on.) If considering use of this product in equipment or devices that require high reliability (medical devices, transportation equipment, traffic signal control equipment, fire and crime prevention equipment, aeronautics and space devices, nuclear power control, fuel control, in-vehicle equipment, safety devices, and so on), please consult a TAMURA sales representative in advance. Do not use this product for such applications without written permission from TAMURA Corporation.
- This product is intended for use in environments where consumer electronics are commonly used.
 It is not designed for use in special environments such as listed below, and if such use is considered, you are to perform thorough safety and reliability checks at your own responsibility.
 - Use in liquids such as water, oil, chemical solutions, or organic solvents, and use in locations where the product will be exposed to such liquids.
 - Use that involves exposure to direct sunlight, outdoor exposure, or dusty conditions.
 - Use in locations where corrosive gases such as salt air, C12, H2S, NH3, SO2, or NO2, are present.
 - $\boldsymbol{\cdot}$ Use in environments with strong static electricity or electromagnetic radiation.
 - $\boldsymbol{\cdot}$ Use that involves placing inflammable material next to the product.
 - Use of this product either sealed with a resin filling or coated with resin.
 - · Use of water or a water soluble detergent for flux cleaning.
 - · Use in locations where condensation is liable to occur.
- This product is not designed to resist radiation.
- This product is not designed to be connected in series or parallel.
 Do not operate this product in a series, parallel, or N+1 redundant configuration.
- Do not use or otherwise make available the TAMURA products or the technology described in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of mass destruction weapons (e.g. nuclear, chemical, or biological weapons or missile technology products).
 - When exporting and re-exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations including, without limitation, Japan -Foreign Exchange and Foreign Trade Control Law and U.S.- Export Administration Regulations.
 - The TAMURA products and related technology should not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- Please contact your TAMURA sales office for details as to environmental matters such as the RoHS compatibility of product.
 Please use TAMURA products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
 - TAMURA assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- TAMURA assumes no liability for damages or losses incurred by you or third parties as a result of unauthorized use of TAMURA products.
- This document and any information herein may not be reproduced in whole or in part without prior written permission from TAMURA.